{"title":"Shear Resisting Mechanism and Shear Strength Equation for Sandwich Beams","authors":"Ataur Rahman, T. Ueda","doi":"10.5539/JMSR.V7N2P1","DOIUrl":null,"url":null,"abstract":"The aim of this study is to eliminate the limitation of existing shear design equations and to establish a complete set of rational as well as computationally efficient shear design equations. On this goal, a macro physical model, based on 2D nonlinear FEM analysis, for both open and full sandwich beams are developed which can clearly demostrate the contributions of different parts of the sandwich beam in resisting shear force. The proposed model also shows a satisfactory correlation between the experimental and the analytical results. A series of analytical specimens in connection with experimental one are analyzed by engaging a 2D-FEM program and a complete set of shear strength equations are derived with the help of that proposed shear resisting model. The equations for full sandwich beam show a good agreement with experimental and analytical results, whereas equations for open sandwich beam require further investigation to increase their level of accuracy and are not presented here.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"15 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V7N2P1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this study is to eliminate the limitation of existing shear design equations and to establish a complete set of rational as well as computationally efficient shear design equations. On this goal, a macro physical model, based on 2D nonlinear FEM analysis, for both open and full sandwich beams are developed which can clearly demostrate the contributions of different parts of the sandwich beam in resisting shear force. The proposed model also shows a satisfactory correlation between the experimental and the analytical results. A series of analytical specimens in connection with experimental one are analyzed by engaging a 2D-FEM program and a complete set of shear strength equations are derived with the help of that proposed shear resisting model. The equations for full sandwich beam show a good agreement with experimental and analytical results, whereas equations for open sandwich beam require further investigation to increase their level of accuracy and are not presented here.