{"title":"Syntheses, Characterization, and Antibacterial Evaluation of P. grandiflora Extracts Conjugated with Gold Nanoparticles","authors":"A. Murei, K. Pillay, A. Samie","doi":"10.1155/2021/8687627","DOIUrl":null,"url":null,"abstract":"Background. With the recent increase in antibiotic resistance to conventional antibiotics, gold nanoparticles, and medicinal plants, extracts present an interesting alternative. Objectives. This study aimed to synthesize, characterize, and evaluate Pyrenacantha grandiflora Baill extracts and gold nanoparticle conjugates against pathogenic bacteria. Methods. We synthesized gold nanoparticles by chemical and biological methods. The nanoparticles were characterized by the use of UV-visible spectrophotometry, followed by transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). Gold nanoparticles were conjugated to plant extracts and analyzed with a Fourier-transform infrared spectroscope (FTIR). We determined the antimicrobial activity of the conjugates using well diffusion and the microdilution assays. Results. The UV–visible spectra of gold nanoparticles showed a synthesis peak at 530 nm. FTIR analysis indicated functional biomolecules that were associated with plant extract conjugated gold nanoparticles; the formation of C–H group and carbonyl (C=O) groups, –OH carbonyl, and C≡C groups were also observed. Biologically synthesized nanoparticles were star-shaped when observed by TEM with an average size of 11 nm. Gold nanoparticles synthesized with P. grandiflora water extracts showed the largest zone of inhibition (22 mm). When the gold nanoparticles synthesized by the biological method were conjugated with acetone extracts of P. grandiflora, MIC as low as 0.0063 mg/mL was observed against beta-lactamase producing K. pneumonia. The activity of acetone extracts was improved with chemically synthesized gold nanoparticles particularly when beta-lactamase producing E. coli and MRSA were used as test organisms. A synergistic effect was observed against all tested bacteria, except for MRSA when gold nanoparticles were conjugated with acetone extract. Conclusion. Overall, P. grandiflora tuber extracts conjugated with gold nanoparticles showed a very good antibacterial activity that improved both plant extract and gold nanoparticle’s individual activity.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8687627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Background. With the recent increase in antibiotic resistance to conventional antibiotics, gold nanoparticles, and medicinal plants, extracts present an interesting alternative. Objectives. This study aimed to synthesize, characterize, and evaluate Pyrenacantha grandiflora Baill extracts and gold nanoparticle conjugates against pathogenic bacteria. Methods. We synthesized gold nanoparticles by chemical and biological methods. The nanoparticles were characterized by the use of UV-visible spectrophotometry, followed by transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). Gold nanoparticles were conjugated to plant extracts and analyzed with a Fourier-transform infrared spectroscope (FTIR). We determined the antimicrobial activity of the conjugates using well diffusion and the microdilution assays. Results. The UV–visible spectra of gold nanoparticles showed a synthesis peak at 530 nm. FTIR analysis indicated functional biomolecules that were associated with plant extract conjugated gold nanoparticles; the formation of C–H group and carbonyl (C=O) groups, –OH carbonyl, and C≡C groups were also observed. Biologically synthesized nanoparticles were star-shaped when observed by TEM with an average size of 11 nm. Gold nanoparticles synthesized with P. grandiflora water extracts showed the largest zone of inhibition (22 mm). When the gold nanoparticles synthesized by the biological method were conjugated with acetone extracts of P. grandiflora, MIC as low as 0.0063 mg/mL was observed against beta-lactamase producing K. pneumonia. The activity of acetone extracts was improved with chemically synthesized gold nanoparticles particularly when beta-lactamase producing E. coli and MRSA were used as test organisms. A synergistic effect was observed against all tested bacteria, except for MRSA when gold nanoparticles were conjugated with acetone extract. Conclusion. Overall, P. grandiflora tuber extracts conjugated with gold nanoparticles showed a very good antibacterial activity that improved both plant extract and gold nanoparticle’s individual activity.