Synthesis, characterization, and in silico analysis against SARS CoV-2 of novel benzimidazolium salts

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Ovidius University Annals of Chemistry Pub Date : 2021-07-01 DOI:10.2478/auoc-2021-0021
E. Üstün, N. Şahin
{"title":"Synthesis, characterization, and in silico analysis against SARS CoV-2 of novel benzimidazolium salts","authors":"E. Üstün, N. Şahin","doi":"10.2478/auoc-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract In acute conditions, vaccines are very important, although they provide antibodies for fighting against COVID-19 for a certain period. It is necessary to produce an anti-viral agent for a usual healing process against SARS CoV-2 which is responsible the pandemic we are living in. Many drugs with benzimidazole main scaffold are still used in a wide variety of treatment procedures. In this case, substituted benzimidazole structures could be good candidates for fighting against COVID-19. Theoretical calculation methods could be a key tool for overcome the difficulties of individual analyzing of each new structure. In this study, new benzimidazole structures were synthesized and characterized for in silico evaluation as anti-viral agent. The molecules were optimized and analyzed for reactivity with Koopmans Theorem. Also, molecular docking simulations were performed for SARS coronavirus main peptidase (PDB ID: 2GTB), COVID-19 main protease (PDB ID: 5R82), and papain-like protease of SARS CoV-2 (PDB ID: 6W9C) crystals.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In acute conditions, vaccines are very important, although they provide antibodies for fighting against COVID-19 for a certain period. It is necessary to produce an anti-viral agent for a usual healing process against SARS CoV-2 which is responsible the pandemic we are living in. Many drugs with benzimidazole main scaffold are still used in a wide variety of treatment procedures. In this case, substituted benzimidazole structures could be good candidates for fighting against COVID-19. Theoretical calculation methods could be a key tool for overcome the difficulties of individual analyzing of each new structure. In this study, new benzimidazole structures were synthesized and characterized for in silico evaluation as anti-viral agent. The molecules were optimized and analyzed for reactivity with Koopmans Theorem. Also, molecular docking simulations were performed for SARS coronavirus main peptidase (PDB ID: 2GTB), COVID-19 main protease (PDB ID: 5R82), and papain-like protease of SARS CoV-2 (PDB ID: 6W9C) crystals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型苯并咪唑盐的合成、表征及抗SARS - CoV-2的硅分析
在急性情况下,疫苗是非常重要的,尽管它们在一定时期内提供对抗COVID-19的抗体。有必要生产一种抗病毒药物,用于对抗SARS - CoV-2的常规治疗过程,SARS - CoV-2是我们所处的大流行的罪魁祸首。许多以苯并咪唑为主支架的药物仍广泛应用于各种治疗程序中。在这种情况下,取代苯并咪唑结构可能是对抗COVID-19的良好候选者。理论计算方法可以成为克服每个新结构单独分析困难的关键工具。在本研究中,合成了新的苯并咪唑结构,并对其进行了硅评价。用库普曼定理对分子进行了优化和反应性分析。并对SARS冠状病毒主要肽酶(PDB ID: 2GTB)、COVID-19主要蛋白酶(PDB ID: 5R82)和SARS CoV-2的木瓜蛋白酶(PDB ID: 6W9C)晶体进行了分子对接模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ovidius University Annals of Chemistry
Ovidius University Annals of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
11.10%
发文量
20
审稿时长
5 weeks
期刊最新文献
Assessment of spatial distribution of lead in soils around an active military shooting range End-of-life mobile phones parts contain toxic metals that make them hazardous, but can also serve as resource reserves for such metals Rheology of new lubricating greases made from renewable materials Solubility of acetaminophen in the ethanol and glycerol mixtures at different temperatures Eco-friendly and efficient monitoring of physico-chemical parameters of some mineral water from Slanic Moldova (Romania) during storage in different conditions – a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1