Z. Fradkin, M. Roitman, A. Bardea, Roy Avrahamy, Yeoshua Bery, H. Ohana, M. Zohar
{"title":"Fabrication of polymeric photonic structures using dip-pen nanolithography","authors":"Z. Fradkin, M. Roitman, A. Bardea, Roy Avrahamy, Yeoshua Bery, H. Ohana, M. Zohar","doi":"10.1117/1.JMM.19.1.013501","DOIUrl":null,"url":null,"abstract":"Abstract. Dip-pen nanolithography (DPN) is a low-cost, versatile, bench-top technology for direct patterning of materials over surfaces. Our study reports on the production of two-dimensional optical grating nanostructures based on polymers, using DPN. The influence of both the ink composition and the dwell time were investigated. Prototypes of phase masks were manufactured, and their main characteristics were analyzed. The results in our work may contribute to improving the fabrication process of optical structures, including the production of microlenses with controlled focal length.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"39 1","pages":"013501 - 013501"},"PeriodicalIF":1.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.19.1.013501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Dip-pen nanolithography (DPN) is a low-cost, versatile, bench-top technology for direct patterning of materials over surfaces. Our study reports on the production of two-dimensional optical grating nanostructures based on polymers, using DPN. The influence of both the ink composition and the dwell time were investigated. Prototypes of phase masks were manufactured, and their main characteristics were analyzed. The results in our work may contribute to improving the fabrication process of optical structures, including the production of microlenses with controlled focal length.