Plasma based concept for engineering of multifunctional materials with application to synthesis of large-area plasmonic substrates and to control the charge injection in dielectrics
K. Makasheva, B. Despax, C. Laurent, L. Millière, C. Villeneuve-Faure, C. Bonafos, A. Pugliara, R. Carles, L. Boudou, G. Teyssèdre
{"title":"Plasma based concept for engineering of multifunctional materials with application to synthesis of large-area plasmonic substrates and to control the charge injection in dielectrics","authors":"K. Makasheva, B. Despax, C. Laurent, L. Millière, C. Villeneuve-Faure, C. Bonafos, A. Pugliara, R. Carles, L. Boudou, G. Teyssèdre","doi":"10.1109/NANO.2016.7751389","DOIUrl":null,"url":null,"abstract":"The proposed approach in this contribution concerns plasma deposition processes for engineering of multifunctional materials. It opens the way for transition from material level of development to system level of applications. This concept is applied for deposition of nanocomposite thin layers comprising a single layer of silver nanoparticles (AgNPs) embedded in silica-like host matrices at a controlled distance from the free surface with application in two distinguished fields, namely plasmonics to obtain large-area plasmonic embedded substrates and electrical engineering to control the charge injection in dielectrics. Structural, optical and electrical characterizations of the samples confirm the process efficiency.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"69 1","pages":"8-11"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed approach in this contribution concerns plasma deposition processes for engineering of multifunctional materials. It opens the way for transition from material level of development to system level of applications. This concept is applied for deposition of nanocomposite thin layers comprising a single layer of silver nanoparticles (AgNPs) embedded in silica-like host matrices at a controlled distance from the free surface with application in two distinguished fields, namely plasmonics to obtain large-area plasmonic embedded substrates and electrical engineering to control the charge injection in dielectrics. Structural, optical and electrical characterizations of the samples confirm the process efficiency.