J. Sanz-Robinson, W. Rieutort-Louis, N. Verma, S. Wagner, J. Sturm
{"title":"Frequency dependence of amorphous silicon Schottky diodes for Large-Area rectification applications","authors":"J. Sanz-Robinson, W. Rieutort-Louis, N. Verma, S. Wagner, J. Sturm","doi":"10.1109/DRC.2012.6257001","DOIUrl":null,"url":null,"abstract":"Schottky diodes can play a valuable role as rectifiers in Large-Area Electronics (LAE) systems and circuits. They can be used to recover a DC signal when an AC carrier is used to transmit signals between adjacent plastic electronic sheets through near-field wireless coupling [1], rectify DC power after AC transmission between sheets to provide power to sensors, and so forth. In this paper we describe: 1) the intrinsic frequency limits of Schottky diodes fabricated on hydrogenated amorphous silicon (a-Si:H); 2) circuit design strategies for using the diodes at frequencies far beyond their intrinsic limits; 3) and the application of these strategies to demonstrate, to the best of out knowledge, the first amorphous silicon (a-Si:H) full-wave rectifier, with an AC-to-DC power conversion efficiency (PCE) ranging from approximately 46% at 200 Hz to greater than 10 % at 1 MHz.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"14 1","pages":"135-136"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Schottky diodes can play a valuable role as rectifiers in Large-Area Electronics (LAE) systems and circuits. They can be used to recover a DC signal when an AC carrier is used to transmit signals between adjacent plastic electronic sheets through near-field wireless coupling [1], rectify DC power after AC transmission between sheets to provide power to sensors, and so forth. In this paper we describe: 1) the intrinsic frequency limits of Schottky diodes fabricated on hydrogenated amorphous silicon (a-Si:H); 2) circuit design strategies for using the diodes at frequencies far beyond their intrinsic limits; 3) and the application of these strategies to demonstrate, to the best of out knowledge, the first amorphous silicon (a-Si:H) full-wave rectifier, with an AC-to-DC power conversion efficiency (PCE) ranging from approximately 46% at 200 Hz to greater than 10 % at 1 MHz.