Transient Behavior of Redox Flow Battery Connected to Circuit Based on Global Phase Structure

T. Mannari, T. Hikihara
{"title":"Transient Behavior of Redox Flow Battery Connected to Circuit Based on Global Phase Structure","authors":"T. Mannari, T. Hikihara","doi":"10.1587/NOLTA.9.137","DOIUrl":null,"url":null,"abstract":"A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/NOLTA.9.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全局相位结构的氧化还原液流电池接电瞬态行为
氧化还原液流电池(RFB)是电网中最有前途的储能系统之一。RFB具有许多优点,例如快速响应、大容量和可伸缩性。由于这些优点,RFB可以在混合时间尺度下运行。实际应用表明,RFB可用于平衡负荷、补偿凹陷和平滑可再生能源的输出。在这些应用中,对RFB的瞬态行为分析是一个关键问题。RFB受电学、化学和流体动力学的支配。混合结构使分析变得困难。为了分析RFB的瞬态行为,需要精确的模型。本文以电解液中离子浓度的变化为研究对象,建立了一个主要基于化学动力学的模型来模拟离子浓度的变化。仿真结果介绍了负载变化时RFB的瞬态特性。发现了包括振荡在内的三种典型瞬态行为。结果表明,由于系统的动态速度快或慢,系统的复杂瞬态行为是由对负荷的快速响应引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Localization of Active Aerial Targets Using a Single Terrestrial Receiver Site Feasibility Study on Intra-Grid Location Estimation Using Power ENF Signals Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1