Munshi Muhammad Raihan, A. K. Piya, Mirajul Mahmud Abir, M. A. Hossain
{"title":"Effect of SBF on Cyclic Compression Behaviour of Porous Titanium Component for Implant Application","authors":"Munshi Muhammad Raihan, A. K. Piya, Mirajul Mahmud Abir, M. A. Hossain","doi":"10.11648/J.IE.20200402.14","DOIUrl":null,"url":null,"abstract":"In the recent years, porous structure is being drawn attention to the researcher for implant application for superior characteristics over bulk materials. The aim of this study is to evaluate the cyclic compression behaviour of porous titanium components in simulated body fluid (SBF). Porous titanium component developed by replica impregnation method was taken for study. Compression tests in air revealed that the yield strength of the porous body is 8MPa on average and elastic modulus is around 180MPa which is compatible to cancellous bone application. After 10% strain porous structure deformed plastically producing a long plateau region. Compressive fatigue tests revealed that at higher stress level porous titanium failed earlier in SBF than in air. In contrast, fatigue limit of porous substrate is 2 MPa which was not affected by SBF medium. After 10 million cycles in SBF, Calcium Phosphate layer was partially formed on the surface of porous titanium by re-precipitation from SBF. EDS analysis showed that the Ca/P atomic ratio was 1.44 which is near to beta TCP and HA phase and these phases are beneficial for bone tissue ingrowth.","PeriodicalId":54988,"journal":{"name":"Industrial Engineer","volume":"26 1","pages":"50"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IE.20200402.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the recent years, porous structure is being drawn attention to the researcher for implant application for superior characteristics over bulk materials. The aim of this study is to evaluate the cyclic compression behaviour of porous titanium components in simulated body fluid (SBF). Porous titanium component developed by replica impregnation method was taken for study. Compression tests in air revealed that the yield strength of the porous body is 8MPa on average and elastic modulus is around 180MPa which is compatible to cancellous bone application. After 10% strain porous structure deformed plastically producing a long plateau region. Compressive fatigue tests revealed that at higher stress level porous titanium failed earlier in SBF than in air. In contrast, fatigue limit of porous substrate is 2 MPa which was not affected by SBF medium. After 10 million cycles in SBF, Calcium Phosphate layer was partially formed on the surface of porous titanium by re-precipitation from SBF. EDS analysis showed that the Ca/P atomic ratio was 1.44 which is near to beta TCP and HA phase and these phases are beneficial for bone tissue ingrowth.