{"title":"Glucosylimidazolium Hydroxide: A Bench-Stable Carbohydrate Based Building Block","authors":"Johannes Schnegas, S. Jopp","doi":"10.3390/compounds1030014","DOIUrl":null,"url":null,"abstract":"Hygroscopic effects in ionic liquids and salts in general, and how to suppress said hygroscopy, often needs to be considered during the everyday work routine. Chemicals that decompose, undergo hydrolysis or in any way change their composition when exposed to air are generally not considered to be bench-stable. In this study, we synthesized a low-hygroscopic, bench-stable carbohydrate-based hydroxide salt. This new product was synthesized in an optimized three-step procedure with 91% overall yield. Its worth as a building block was proven through the reaction with different natural acids, leading to new carbohydrate-based ionic liquids (CHILs) in the process.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/compounds1030014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Hygroscopic effects in ionic liquids and salts in general, and how to suppress said hygroscopy, often needs to be considered during the everyday work routine. Chemicals that decompose, undergo hydrolysis or in any way change their composition when exposed to air are generally not considered to be bench-stable. In this study, we synthesized a low-hygroscopic, bench-stable carbohydrate-based hydroxide salt. This new product was synthesized in an optimized three-step procedure with 91% overall yield. Its worth as a building block was proven through the reaction with different natural acids, leading to new carbohydrate-based ionic liquids (CHILs) in the process.