Ultrahigh-density self-assembled quantum dots of InGaAs and suppression of optical state-filling effect

Masayuki Urabe, Kazuki Takeishi, Kodai Itabashi, J. Takayama, Shula L. Chen, A. Murayama
{"title":"Ultrahigh-density self-assembled quantum dots of InGaAs and suppression of optical state-filling effect","authors":"Masayuki Urabe, Kazuki Takeishi, Kodai Itabashi, J. Takayama, Shula L. Chen, A. Murayama","doi":"10.1109/NANO.2016.7751331","DOIUrl":null,"url":null,"abstract":"We have grown ultrahigh-density self-assembled quantum dots (QDs) of InGaAs with sheet densities up to 2.5×1011 cm-2 and lateral diameters down to 10 nm, where the dot density increases with increasing As pressure during dot growth under optimum growth conditions. A ground-state photoluminescence (PL) spectrum shows a spectral width of 47 meV for the highest-density sample. Optical excitation-density dependences of the PL intensity and time profile are studied. The PL intensity from QD excited states increases with increasing excitation power, originating from a state-filling effect in QDs, which is directly confirmed by a plateau-like behavior on the PL decay curve. We find that the filling effect is significantly suppressed in the above ultrahigh-density dot ensemble, which suggests potential applications to superior energy-saving lasing and spin-functional optical devices.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"23 1","pages":"638-639"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have grown ultrahigh-density self-assembled quantum dots (QDs) of InGaAs with sheet densities up to 2.5×1011 cm-2 and lateral diameters down to 10 nm, where the dot density increases with increasing As pressure during dot growth under optimum growth conditions. A ground-state photoluminescence (PL) spectrum shows a spectral width of 47 meV for the highest-density sample. Optical excitation-density dependences of the PL intensity and time profile are studied. The PL intensity from QD excited states increases with increasing excitation power, originating from a state-filling effect in QDs, which is directly confirmed by a plateau-like behavior on the PL decay curve. We find that the filling effect is significantly suppressed in the above ultrahigh-density dot ensemble, which suggests potential applications to superior energy-saving lasing and spin-functional optical devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InGaAs超高密度自组装量子点及其抑制光态填充效应
在最佳生长条件下,制备了薄膜密度可达2.5×1011 cm-2、横向直径可达10 nm的超高密度自组装InGaAs量子点,其点密度随As压力的增加而增加。基态光致发光(PL)光谱显示,最高密度样品的光谱宽度为47 meV。研究了光激发密度与光激发强度和光激发密度的关系。量子点激发态的PL强度随着激发功率的增加而增加,这是由于量子点的状态填充效应,这在PL衰减曲线上直接得到了平台状行为的证实。我们发现,在上述超高密度点系综中,填充效应被显著抑制,这表明在高性能节能激光和自旋功能光学器件中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer coated nanorobot end-effector for efficient drug delivery A three-dimensional ZnO nanowires photodetector Relationship between electric properties and surface flatness of (ZnO)x(InN)1−x films on ZnO templates Inter-particle potential fluctuation of two fine particles suspended in Ar plasmas Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1