Adaptive Reinforcement Learning Tracking Control for Second-Order Multi-Agent Systems

Weiwei Bai, Liang Cao, Guowei Dong, Hongyi Li
{"title":"Adaptive Reinforcement Learning Tracking Control for Second-Order Multi-Agent Systems","authors":"Weiwei Bai, Liang Cao, Guowei Dong, Hongyi Li","doi":"10.1109/DDCLS.2019.8908978","DOIUrl":null,"url":null,"abstract":"In this paper, the adaptive reinforcement learning tracking control problem is studied for second-order pure-feedback multi-agent systems (MASs). The pure-feedback MASs are transformed into strict-feedback form by using the mean value theorem. The reinforcement learning approach is applied to handle the unknown functions and system control performance index. Moreover, the error terms are introduced to the controller, which can improve the robust of the control scheme. The theoretical analysis indicates that all the signals and tracking errors in close-loop system are semi-global uniformly ultimately bounded (SGUUB), and the numerical simulation are conducted to verify the superiority of this scheme.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"3 1","pages":"202-207"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the adaptive reinforcement learning tracking control problem is studied for second-order pure-feedback multi-agent systems (MASs). The pure-feedback MASs are transformed into strict-feedback form by using the mean value theorem. The reinforcement learning approach is applied to handle the unknown functions and system control performance index. Moreover, the error terms are introduced to the controller, which can improve the robust of the control scheme. The theoretical analysis indicates that all the signals and tracking errors in close-loop system are semi-global uniformly ultimately bounded (SGUUB), and the numerical simulation are conducted to verify the superiority of this scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二阶多智能体系统的自适应强化学习跟踪控制
研究了二阶纯反馈多智能体系统的自适应强化学习跟踪控制问题。利用中值定理将纯反馈质量转化为严格反馈形式。采用强化学习方法处理未知函数和系统控制性能指标。此外,在控制器中引入误差项,提高了控制方案的鲁棒性。理论分析表明,闭环系统的所有信号和跟踪误差都是半全局一致最终有界的(SGUUB),并通过数值仿真验证了该方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1