Multilingual BERT Cross-Lingual Transferability with Pre-trained Representations on Tangut: A Survey

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00048
Xiaoming Lu, Wenjian Liu, Shengyi Jiang, Changqing Liu
{"title":"Multilingual BERT Cross-Lingual Transferability with Pre-trained Representations on Tangut: A Survey","authors":"Xiaoming Lu, Wenjian Liu, Shengyi Jiang, Changqing Liu","doi":"10.1109/ICNLP58431.2023.00048","DOIUrl":null,"url":null,"abstract":"Natural Language Processing (NLP) systems have three main components including tokenization, embedding, and model architectures (top deep learning models such as BERT, GPT-2, or GPT-3). In this paper, the authors attempt to explore and sum up possible ways of fine-tuning the Multilingual BERT (mBERT) model and feeding it with effective encodings of Tangut characters. Tangut is an extinct low-resource language. We expect to introduce a tailored embedding layer into Tangut as part of the fine-tuning procedure without altering mBERT internal structure. The initial work is listed on. By reviewing existing State of the Art (SOTA) approaches, we hope to further analyze the performance boost of mBERT when applied to low-resource languages.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"14 1","pages":"229-234"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Natural Language Processing (NLP) systems have three main components including tokenization, embedding, and model architectures (top deep learning models such as BERT, GPT-2, or GPT-3). In this paper, the authors attempt to explore and sum up possible ways of fine-tuning the Multilingual BERT (mBERT) model and feeding it with effective encodings of Tangut characters. Tangut is an extinct low-resource language. We expect to introduce a tailored embedding layer into Tangut as part of the fine-tuning procedure without altering mBERT internal structure. The initial work is listed on. By reviewing existing State of the Art (SOTA) approaches, we hope to further analyze the performance boost of mBERT when applied to low-resource languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多语言BERT跨语言可移植性与预训练的切线表示:一项调查
自然语言处理(NLP)系统有三个主要组成部分,包括标记化、嵌入和模型架构(顶级深度学习模型,如BERT、GPT-2或GPT-3)。在本文中,作者试图探索和总结微调多语言BERT (mBERT)模型并为其提供有效的切线字符编码的可能方法。唐古特语是一种已经灭绝的资源匮乏的语言。我们希望在不改变mBERT内部结构的情况下,将一个定制的嵌入层引入到Tangut中,作为微调过程的一部分。最初的工作列在。通过回顾现有的SOTA方法,我们希望进一步分析mBERT在应用于低资源语言时的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1