Alexandros Kouris, Stylianos I. Venieris, C. Bouganis
{"title":"Towards Efficient On-Board Deployment of DNNs on Intelligent Autonomous Systems","authors":"Alexandros Kouris, Stylianos I. Venieris, C. Bouganis","doi":"10.1109/ISVLSI.2019.00107","DOIUrl":null,"url":null,"abstract":"With their unprecedented performance in major AI tasks, deep neural networks (DNNs) have emerged as a primary building block in modern autonomous systems. Intelligent systems such as drones, mobile robots and driverless cars largely base their perception, planning and application-specific tasks on DNN models. Nevertheless, due to the nature of these applications, such systems require on-board local processing in order to retain their autonomy and meet latency and throughput constraints. In this respect, the large computational and memory demands of DNN workloads pose a significant barrier on their deployment on the resource-and power-constrained compute platforms that are available on-board. This paper presents an overview of recent methods and hardware architectures that address the system-level challenges of modern DNN-enabled autonomous systems at both the algorithmic and hardware design level. Spanning from latency-driven approximate computing techniques to high-throughput mixed-precision cascaded classifiers, the presented set of works paves the way for the on-board deployment of sophisticated DNN models on robots and autonomous systems.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"9 1","pages":"568-573"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
With their unprecedented performance in major AI tasks, deep neural networks (DNNs) have emerged as a primary building block in modern autonomous systems. Intelligent systems such as drones, mobile robots and driverless cars largely base their perception, planning and application-specific tasks on DNN models. Nevertheless, due to the nature of these applications, such systems require on-board local processing in order to retain their autonomy and meet latency and throughput constraints. In this respect, the large computational and memory demands of DNN workloads pose a significant barrier on their deployment on the resource-and power-constrained compute platforms that are available on-board. This paper presents an overview of recent methods and hardware architectures that address the system-level challenges of modern DNN-enabled autonomous systems at both the algorithmic and hardware design level. Spanning from latency-driven approximate computing techniques to high-throughput mixed-precision cascaded classifiers, the presented set of works paves the way for the on-board deployment of sophisticated DNN models on robots and autonomous systems.