Efficient Interaction-based Neural Ranking with Locality Sensitive Hashing

Shiyu Ji, Jinjin Shao, Tao Yang
{"title":"Efficient Interaction-based Neural Ranking with Locality Sensitive Hashing","authors":"Shiyu Ji, Jinjin Shao, Tao Yang","doi":"10.1145/3308558.3313576","DOIUrl":null,"url":null,"abstract":"Interaction-based neural ranking has been shown to be effective for document search using distributed word representations. However the time or space required is very expensive for online query processing with neural ranking. This paper investigates fast approximation of three interaction-based neural ranking algorithms using Locality Sensitive Hashing (LSH). It accelerates query-document interaction computation by using a runtime cache with precomputed term vectors, and speeds up kernel calculation by taking advantages of limited integer similarity values. This paper presents the design choices with cost analysis, and an evaluation that assesses efficiency benefits and relevance tradeoffs for the tested datasets.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Interaction-based neural ranking has been shown to be effective for document search using distributed word representations. However the time or space required is very expensive for online query processing with neural ranking. This paper investigates fast approximation of three interaction-based neural ranking algorithms using Locality Sensitive Hashing (LSH). It accelerates query-document interaction computation by using a runtime cache with precomputed term vectors, and speeds up kernel calculation by taking advantages of limited integer similarity values. This paper presents the design choices with cost analysis, and an evaluation that assesses efficiency benefits and relevance tradeoffs for the tested datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部敏感哈希的高效交互神经排序
基于交互的神经排序已被证明是有效的文档搜索使用分布式词表示。然而,使用神经排序的在线查询处理所需的时间和空间是非常昂贵的。本文研究了三种基于局部敏感哈希(LSH)的基于交互的神经排序算法的快速逼近。它通过使用带有预先计算的术语向量的运行时缓存来加速查询-文档交互计算,并通过利用有限的整数相似值来加快内核计算。本文提出了具有成本分析的设计选择,以及评估测试数据集的效率效益和相关性权衡的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1