Multi-Domain Gated CNN for Review Helpfulness Prediction

Cen Chen, Minghui Qiu, Yinfei Yang, Jun Zhou, Jun Huang, Xiaolong Li, F. S. Bao
{"title":"Multi-Domain Gated CNN for Review Helpfulness Prediction","authors":"Cen Chen, Minghui Qiu, Yinfei Yang, Jun Zhou, Jun Huang, Xiaolong Li, F. S. Bao","doi":"10.1145/3308558.3313587","DOIUrl":null,"url":null,"abstract":"Consumers today face too many reviews to read when shopping online. Presenting the most helpful reviews, instead of all, to them will greatly ease purchase decision making. Most of the existing studies on review helpfulness prediction focused on domains with rich labels, not suitable for domains with insufficient labels. In response, we explore a multi-domain approach that learns domain relationships to help the task by transferring knowledge from data-rich domains to data-deficient domains. To better model domain differences, our approach gates multi-granularity embeddings in a Neural Network (NN) based transfer learning framework to reflect the domain-variant importance of words. Extensive experiments empirically demonstrate that our model outperforms the state-of-the-art baselines and NN-based methods without gating on this task. Our approach facilitates more effective knowledge transfer between domains, especially when the target domain dataset is small. Meanwhile, the domain relationship and domain-specific embedding gating are insightful and interpretable.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Consumers today face too many reviews to read when shopping online. Presenting the most helpful reviews, instead of all, to them will greatly ease purchase decision making. Most of the existing studies on review helpfulness prediction focused on domains with rich labels, not suitable for domains with insufficient labels. In response, we explore a multi-domain approach that learns domain relationships to help the task by transferring knowledge from data-rich domains to data-deficient domains. To better model domain differences, our approach gates multi-granularity embeddings in a Neural Network (NN) based transfer learning framework to reflect the domain-variant importance of words. Extensive experiments empirically demonstrate that our model outperforms the state-of-the-art baselines and NN-based methods without gating on this task. Our approach facilitates more effective knowledge transfer between domains, especially when the target domain dataset is small. Meanwhile, the domain relationship and domain-specific embedding gating are insightful and interpretable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多域门控CNN评论帮助预测
今天的消费者在网上购物时要面对太多的评论。提供最有帮助的评论,而不是所有的评论,将大大简化他们的购买决策。现有的复习帮助预测研究大多集中在标签丰富的领域,不适合标签不足的领域。为此,我们探索了一种学习领域关系的多领域方法,通过将知识从数据丰富的领域转移到数据缺乏的领域来帮助完成任务。为了更好地建模领域差异,我们的方法在基于神经网络(NN)的迁移学习框架中引入了多粒度嵌入,以反映单词在领域变化中的重要性。大量的实验经验表明,我们的模型在没有门控的情况下优于最先进的基线和基于神经网络的方法。我们的方法促进了更有效的领域之间的知识转移,特别是当目标领域数据集很小的时候。同时,领域关系和特定于领域的嵌入门控具有深刻的洞察力和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1