PENAKSIRAN PARAMETER ANALISIS REGRESI COX DAN ANALISIS SURVIVAL BAYESIAN

Rina Wijayanti
{"title":"PENAKSIRAN PARAMETER ANALISIS REGRESI COX DAN ANALISIS SURVIVAL BAYESIAN","authors":"Rina Wijayanti","doi":"10.33503/PRISMATIKA.V1I2.427","DOIUrl":null,"url":null,"abstract":"In the theory of estimation, there are two approaches, namely the classical statistical approach and global statistical approach (Bayesian). Classical statistics are statistics in which the procedure is the decision based only on the data samples taken from the population. While Bayesian statistics in making decisions based on new information from the observed data (sample) and prior knowledge. At this writing Cox Regression Analysis will be taken as an example of parameter estimation by the classical statistical approach Survival Analysis and Bayesian statistical approach as an example of global (Bayesian). Survival Bayesial parameter estimation using MCMC algorithms for model complex / complicated and difficult to resolve while the Cox regression models using the method of partial likelihood. Results of the parameter estimates do not close form that needs to be done by the method of Newton-Raphson iteration.","PeriodicalId":20523,"journal":{"name":"PRISMATIKA: Jurnal Pendidikan dan Riset Matematika","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRISMATIKA: Jurnal Pendidikan dan Riset Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33503/PRISMATIKA.V1I2.427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the theory of estimation, there are two approaches, namely the classical statistical approach and global statistical approach (Bayesian). Classical statistics are statistics in which the procedure is the decision based only on the data samples taken from the population. While Bayesian statistics in making decisions based on new information from the observed data (sample) and prior knowledge. At this writing Cox Regression Analysis will be taken as an example of parameter estimation by the classical statistical approach Survival Analysis and Bayesian statistical approach as an example of global (Bayesian). Survival Bayesial parameter estimation using MCMC algorithms for model complex / complicated and difficult to resolve while the Cox regression models using the method of partial likelihood. Results of the parameter estimates do not close form that needs to be done by the method of Newton-Raphson iteration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在估计理论中,有两种方法,即经典统计方法和全局统计方法(贝叶斯)。经典统计是一种统计方法,其中的决策过程仅基于从总体中获取的数据样本。而贝叶斯统计则是根据观察到的数据(样本)和先验知识中的新信息做出决策。在撰写本文时,将以Cox回归分析为例,通过经典统计方法进行参数估计,生存分析和贝叶斯统计方法作为全局(贝叶斯)的例子。生存贝叶斯参数估计采用MCMC算法求解模型复杂/复杂,而Cox回归模型采用部分似然方法求解。参数估计的结果与牛顿-拉夫逊迭代法的估计结果并不接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STUDI ETNOMATEMATIKA GARIS DAN SUDUT PADA MOTIF SENI RUMAH BUDAYA SUMBA PENGEMBANGAN LIVEWORKSHEETS INTERAKTIF UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA PENGEMBANGAN MEDIA ULAR TANGGA DENGAN MODEL REALISTIC MATHEMATICS EDUCATION PADA PEMAHAMAN KONSEP MATEMATIKA PENGEMBANGAN BAHAN AJAR GEOMETRI DALAM PERMAINAN LATO-LATO ANALISIS PEMBELAJARAN PROBLEM BASED LEARNING (PBL) DENGAN PEMECAHAN MASALAH BERBANTUAN KOMIK LITERASI NUMERASI DAN ETNOMATEMATIKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1