Target tracking algorithm based on YOLOv3 and ASMS

Q3 Engineering 光电工程 Pub Date : 2021-02-26 DOI:10.12086/OEE.2021.200175
Lve Chen, C. Deqiang, Kou Qiqi, Zhuang Huandong, Liu Haixiang
{"title":"Target tracking algorithm based on YOLOv3 and ASMS","authors":"Lve Chen, C. Deqiang, Kou Qiqi, Zhuang Huandong, Liu Haixiang","doi":"10.12086/OEE.2021.200175","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of loss when the target encounters occlusion or the speed is too fast during the automatic tracking process, a target tracking algorithm based on YOLOv3 and ASMS is proposed. Firstly, the target is detected by the YOLOv3 algorithm and the initial target area to be tracked is determined. After that, the ASMS algorithm is used for tracking. The tracking effect of the target is detected and judged in real time. Reposi-tioning is achieved by quadratic fitting positioning and the YOLOv3 algorithm when the target is lost. Finally, in order to further improve the efficiency of the algorithm, the incremental pruning method is used to compress the algorithm model. Compared with the mainstream algorithms, experimental results show that the proposed algorithm can solve the lost problem when the tracking target is occluded, improving the accuracy of target detection and tracking. It also has advantages of low computational complexity, time-consuming, and high real-time performance.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In order to solve the problem of loss when the target encounters occlusion or the speed is too fast during the automatic tracking process, a target tracking algorithm based on YOLOv3 and ASMS is proposed. Firstly, the target is detected by the YOLOv3 algorithm and the initial target area to be tracked is determined. After that, the ASMS algorithm is used for tracking. The tracking effect of the target is detected and judged in real time. Reposi-tioning is achieved by quadratic fitting positioning and the YOLOv3 algorithm when the target is lost. Finally, in order to further improve the efficiency of the algorithm, the incremental pruning method is used to compress the algorithm model. Compared with the mainstream algorithms, experimental results show that the proposed algorithm can solve the lost problem when the tracking target is occluded, improving the accuracy of target detection and tracking. It also has advantages of low computational complexity, time-consuming, and high real-time performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLOv3和asm的目标跟踪算法
为了解决自动跟踪过程中目标遮挡或速度过快造成的目标丢失问题,提出了一种基于YOLOv3和ASMS的目标跟踪算法。首先,利用YOLOv3算法检测目标,确定待跟踪的初始目标区域;然后,采用asm算法进行跟踪。对目标的跟踪效果进行实时检测和判断。当目标丢失时,通过二次拟合定位和YOLOv3算法实现重新定位。最后,为了进一步提高算法的效率,采用增量剪枝方法对算法模型进行压缩。与主流算法相比,实验结果表明,所提算法能够解决跟踪目标被遮挡时的丢失问题,提高了目标检测和跟踪的精度。它还具有计算复杂度低、耗时长、实时性高等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1