Life Cycle Analysis of Dye Degradation Using Advanced Oxidative Processes

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-06-15 DOI:10.3303/CET2186099
Rogério Ferreira da Silva, J. Aragão, P. Matos, Victória Fernanda Alves Milanez, Jacqueline da Silva Macêdo, A. Duarte, Osmar Veras Araujo, Gilson Lima da Silva, A. Costa
{"title":"Life Cycle Analysis of Dye Degradation Using Advanced Oxidative Processes","authors":"Rogério Ferreira da Silva, J. Aragão, P. Matos, Victória Fernanda Alves Milanez, Jacqueline da Silva Macêdo, A. Duarte, Osmar Veras Araujo, Gilson Lima da Silva, A. Costa","doi":"10.3303/CET2186099","DOIUrl":null,"url":null,"abstract":"Pollution caused by textile processes has led several countries to create stricter environmental legislation for the treatment of industrial effluents. Since, to meet legal requirements, the degradation of these chemical dyes must have a low environmental impact and high removal efficiency. This study performed the Life Cycle Analysis (LCA) of the degradation of dyes in 1 m³ of effluent, through advanced oxidative processes, using the Photo-Fenton process. For the Life Cycle Inventory (ICV), the compounds Hydrogen Peroxide (H2O2) and Iron (II) Sulphate (FeSO4) were considered. The methodology for calculating environmental impacts was ReCiPe 2016 Midpoint (I) V1.04 / World (2010) I and the impact categories of the studies were: Global Warming, Freshwater Eutrophication, Freshwater Ecotoxicity and Human Carcinogenic Toxicity. The sensitivity analysis occurred in comparison with the methodologies: IPCC 2013 GWP 20a V1.03 and CML-IA baseline V3.06 / World 2000. All simulations occurred in the SimaPro® software, Faculty version, and pointed to H2O2 as an important contributing agent, along with the secondary products formed by the degradation of the dyes by the Photo-Fenton process, for the environmental impacts of this treatment.Keywords: Life Cycle Analysis, Dye Degradation, Photo-Fenton Pr","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"30 1","pages":"589-594"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Pollution caused by textile processes has led several countries to create stricter environmental legislation for the treatment of industrial effluents. Since, to meet legal requirements, the degradation of these chemical dyes must have a low environmental impact and high removal efficiency. This study performed the Life Cycle Analysis (LCA) of the degradation of dyes in 1 m³ of effluent, through advanced oxidative processes, using the Photo-Fenton process. For the Life Cycle Inventory (ICV), the compounds Hydrogen Peroxide (H2O2) and Iron (II) Sulphate (FeSO4) were considered. The methodology for calculating environmental impacts was ReCiPe 2016 Midpoint (I) V1.04 / World (2010) I and the impact categories of the studies were: Global Warming, Freshwater Eutrophication, Freshwater Ecotoxicity and Human Carcinogenic Toxicity. The sensitivity analysis occurred in comparison with the methodologies: IPCC 2013 GWP 20a V1.03 and CML-IA baseline V3.06 / World 2000. All simulations occurred in the SimaPro® software, Faculty version, and pointed to H2O2 as an important contributing agent, along with the secondary products formed by the degradation of the dyes by the Photo-Fenton process, for the environmental impacts of this treatment.Keywords: Life Cycle Analysis, Dye Degradation, Photo-Fenton Pr
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高级氧化工艺降解染料的生命周期分析
纺织过程造成的污染导致一些国家制定了更严格的环境立法来处理工业废水。因为,为了满足法律要求,这些化学染料的降解必须具有低环境影响和高去除效率。本研究对1 m³废水中染料的降解进行了生命周期分析(LCA),通过先进的氧化过程,使用photofenton工艺。生命周期清单(ICV)考虑了过氧化氢(H2O2)和硫酸铁(FeSO4)化合物。环境影响的计算方法为ReCiPe 2016 Midpoint (I) V1.04 / World (2010) I,研究的影响类别为:全球变暖、淡水富营养化、淡水生态毒性和人类致癌毒性。与IPCC 2013 GWP 20a V1.03和CML-IA基线V3.06 / World 2000的方法进行了敏感性分析。所有模拟都是在SimaPro®软件中进行的,院系版本,并指出H2O2是一个重要的促成剂,以及photofenton工艺降解染料形成的二次产物,这是该处理对环境的影响。关键词:生命周期分析,染料降解,光- fenton Pr
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1