Prediksi Tren Pergerakan Harga Saham PT Bank Central Asia Tbk, Dengan Menggunakan Algoritma Long Shot Term Memory (LSTM)

M. N. Wathani, K. Kusrini, Kusnawi Kusnawi
{"title":"Prediksi Tren Pergerakan Harga Saham PT Bank Central Asia Tbk, Dengan Menggunakan Algoritma Long Shot Term Memory (LSTM)","authors":"M. N. Wathani, K. Kusrini, Kusnawi Kusnawi","doi":"10.29408/jit.v6i2.19824","DOIUrl":null,"url":null,"abstract":"Shares are valuable documents that prove ownership of a company. Stock investment is one of the right choices to get more profit. There are various stocks in Indonesia, one of which is the shares of PT Bank Central Asia Tbk (BBCA). However, in making stock investments, it is necessary to analyze the data of a company that can determine the increase or decrease in a stock price. Very dynamic movements require data modeling to predict stock prices in order to get a high level of accuracy. In this study, modeling using the Long-Short Term Memory (LSTM) algorithm to predict BBCA stock prices. The data used is secondary daily data obtained from securities with a date range of January 3, 2011 to December 30, 2022. The main objective of this research is to analyze the accuracy of the LSTM algorithm in forecasting stock prices and to analyze the number of epochs in the formation of the optimal model. The optimal epoch variation is obtained with the number of epochs of 5 and batch size 1. The resulting values include Mean Absolute Error (MAE) of 96.92, Mean Squared Error (MSE) of 16185.22 and Root Mean Squared Error (RMSE) of 127.22. The results of this study provide further insight into the performance of the LSTM algorithm in stock price prediction and show that with the right parameter settings, it can be a useful tool for investors in making better investment decisions","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v6i2.19824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shares are valuable documents that prove ownership of a company. Stock investment is one of the right choices to get more profit. There are various stocks in Indonesia, one of which is the shares of PT Bank Central Asia Tbk (BBCA). However, in making stock investments, it is necessary to analyze the data of a company that can determine the increase or decrease in a stock price. Very dynamic movements require data modeling to predict stock prices in order to get a high level of accuracy. In this study, modeling using the Long-Short Term Memory (LSTM) algorithm to predict BBCA stock prices. The data used is secondary daily data obtained from securities with a date range of January 3, 2011 to December 30, 2022. The main objective of this research is to analyze the accuracy of the LSTM algorithm in forecasting stock prices and to analyze the number of epochs in the formation of the optimal model. The optimal epoch variation is obtained with the number of epochs of 5 and batch size 1. The resulting values include Mean Absolute Error (MAE) of 96.92, Mean Squared Error (MSE) of 16185.22 and Root Mean Squared Error (RMSE) of 127.22. The results of this study provide further insight into the performance of the LSTM algorithm in stock price prediction and show that with the right parameter settings, it can be a useful tool for investors in making better investment decisions
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票是证明公司所有权的有价值的文件。股票投资是获得更多利润的正确选择之一。印尼有各种各样的股票,其中之一是PT Bank Central Asia Tbk (BBCA)的股票。然而,在进行股票投资时,有必要分析公司的数据,这些数据可以确定股票价格的上涨或下跌。非常动态的运动需要数据建模来预测股票价格,以获得高水平的准确性。本研究采用长短期记忆(LSTM)模型算法对丰原集团股票价格进行预测。数据为每日二级证券数据,日期范围为2011年1月3日至2022年12月30日。本研究的主要目的是分析LSTM算法预测股票价格的准确性,并分析最优模型形成的周期数。当迭代次数为5,批大小为1时,得到了最优的迭代变化。结果的平均绝对误差(MAE)为96.92,均方误差(MSE)为16185.22,均方根误差(RMSE)为127.22。本研究的结果进一步揭示了LSTM算法在股票价格预测中的表现,并表明在正确的参数设置下,它可以成为投资者做出更好投资决策的有用工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Sistem Informasi Geografis Dalam Pemetaan Toko Oleh - Oleh Khas Lombok Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke Penerapan Metode Waterfall dalam Pengembangan Aplikasi Schedule Maintenance Alat Produksi Perancangan Sistem Informasi Absensi Menggunakan Metode QR Code Berbasis Android Aplikasi IT Support Work Orders Berbasis Web Dalam Rangka Menuju Sidoarjo Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1