{"title":"Utility-aware deferred load balancing in the cloud driven by dynamic pricing of electricity","authors":"Muhammad Abdullah Adnan, Rajesh K. Gupta","doi":"10.7873/DATE.2013.066","DOIUrl":null,"url":null,"abstract":"Distributed computing resources in a cloud computing environment provides an opportunity to reduce energy and its cost by shifting loads in response to dynamically varying availability of energy. This variation in electrical power availability is represented in its dynamically changing price that can be used to drive workload deferral against performance requirements. But such deferral may cause user dissatisfaction. In this paper, we quantify the impact of deferral on user satisfaction and utilize flexibility from the service level agreements (SLAs) for deferral to adapt with dynamic price variation. We differentiate among the jobs based on their requirements for responsiveness and schedule them for energy saving while meeting deadlines and user satisfaction. Representing utility as decaying functions along with workload deferral, we make a balance between loss of user satisfaction and energy efficiency. We model delay as decaying functions and guarantee that no job violates the maximum deadline, and we minimize the overall energy cost. Our simulation on MapReduce traces show that energy consumption can be reduced by ∼15%, with such utility-aware deferred load balancing. We also found that considering utility as a decaying function gives better cost reduction than load balancing with a fixed deadline.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"49 1","pages":"262-265"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Distributed computing resources in a cloud computing environment provides an opportunity to reduce energy and its cost by shifting loads in response to dynamically varying availability of energy. This variation in electrical power availability is represented in its dynamically changing price that can be used to drive workload deferral against performance requirements. But such deferral may cause user dissatisfaction. In this paper, we quantify the impact of deferral on user satisfaction and utilize flexibility from the service level agreements (SLAs) for deferral to adapt with dynamic price variation. We differentiate among the jobs based on their requirements for responsiveness and schedule them for energy saving while meeting deadlines and user satisfaction. Representing utility as decaying functions along with workload deferral, we make a balance between loss of user satisfaction and energy efficiency. We model delay as decaying functions and guarantee that no job violates the maximum deadline, and we minimize the overall energy cost. Our simulation on MapReduce traces show that energy consumption can be reduced by ∼15%, with such utility-aware deferred load balancing. We also found that considering utility as a decaying function gives better cost reduction than load balancing with a fixed deadline.