{"title":"Physico-Chemical, Ultrasonic, and Structural Studies on Dextrin with alpha-Amylase in Aqueous Media At 298.15 K","authors":"","doi":"10.33263/lianbs124.141","DOIUrl":null,"url":null,"abstract":"The ultrasonic velocity, density, and viscosity of dextrin in an aqueous medium at 298.15 K were measured using -amylase in this study. The measured parameters were used to calculate acoustic/density parameters such as molar volume (Vm), isentropic compressibility (T), thermal expansion coefficient (T), relaxation time (t), relaxation strength (r), relative viscosity (r), Enthalpy (H), Activation Energy (G), Surface Tension (), van der Walls constant (b), molecular radius (r), Geometrical volume (B), molar surface area (Y), Collision factor (S). Different acoustic magnitudes are computed because they are important in researching unique chemical interactions and theoretical calculations.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ultrasonic velocity, density, and viscosity of dextrin in an aqueous medium at 298.15 K were measured using -amylase in this study. The measured parameters were used to calculate acoustic/density parameters such as molar volume (Vm), isentropic compressibility (T), thermal expansion coefficient (T), relaxation time (t), relaxation strength (r), relative viscosity (r), Enthalpy (H), Activation Energy (G), Surface Tension (), van der Walls constant (b), molecular radius (r), Geometrical volume (B), molar surface area (Y), Collision factor (S). Different acoustic magnitudes are computed because they are important in researching unique chemical interactions and theoretical calculations.