Anil Kumar, Anirban Chakrabarti, Shaona Chatterjee, M. S. Shekhawat, A. Molla
{"title":"Optical and Mechanical Properties of Lithium Aluminosilicate Glass-ceramics","authors":"Anil Kumar, Anirban Chakrabarti, Shaona Chatterjee, M. S. Shekhawat, A. Molla","doi":"10.61343/jcm.v1i01.5","DOIUrl":null,"url":null,"abstract":"Lithium aluminosilicate glass-ceramics has many uses in high-tech applications. Beta quartz or spodumene solid solution phase in the Li2O-Al2O3-SiO2-P2O5 glass system has been precipitated by controlled heat-treatment of the parent glass. These glasses prepared by melt-quench technique. High transparency (>80%) in the visible wavelength range has been observed in the material by UV-VIS-NIR spectrometry. FTIR spectra indicated the presence of Si-O as well as Al-O bonds in the glass-ceramics. The LAS glass ceramics showed moderate flexural strength (~80 MPa) and young’s modulus (~50 GPa). Microstructural characterization of the heat-treated glass ceramics by FESEM and TEM showed nano-crystalline spherical particles of 30-40 nm, which provided a rationale for its high transparency and good mechanical properties that may open up possibilities for newer applications.","PeriodicalId":37739,"journal":{"name":"Journal of Condensed Matter Nuclear Science","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Condensed Matter Nuclear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61343/jcm.v1i01.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1
Abstract
Lithium aluminosilicate glass-ceramics has many uses in high-tech applications. Beta quartz or spodumene solid solution phase in the Li2O-Al2O3-SiO2-P2O5 glass system has been precipitated by controlled heat-treatment of the parent glass. These glasses prepared by melt-quench technique. High transparency (>80%) in the visible wavelength range has been observed in the material by UV-VIS-NIR spectrometry. FTIR spectra indicated the presence of Si-O as well as Al-O bonds in the glass-ceramics. The LAS glass ceramics showed moderate flexural strength (~80 MPa) and young’s modulus (~50 GPa). Microstructural characterization of the heat-treated glass ceramics by FESEM and TEM showed nano-crystalline spherical particles of 30-40 nm, which provided a rationale for its high transparency and good mechanical properties that may open up possibilities for newer applications.
期刊介绍:
The Journal of Condensed Matter Nuclear Science is an open-access electronic journal that accepts scientific papers of high quality concerned with subjects relating to nuclear processes in condensed matter. Papers may focus on the results of experimental studies, theoretical studies, or a combination of these. Topics to which the journal is addressed include:- Calorimetry, energy production in metal hydrides and deuterides; Correlations, or lack of correlations, between energy production and possible nuclear products Materials science issues that are important for the development of nuclear effects in condensed matter Electrochemical issues concerning loading, surface chemistry, resistance diagnostics and other issues concerning metal hydrides and metal deuterides Observations of nuclear products, charged particles, neutrons, tritium, X-ray and gamma emission in metal hydrides Production of new elements or isotopes in metal hydrides and metal deuterides; and modification of isotopic distributions Induced radioactivity in metal deuterides and metal hydrides Accelerator experiments on metal deuterides and metal hydrides Models for nuclear processes in the condensed matter.