A Longitudinal Study of Cryptographic API - a Decade of Android Malware

Adam Janovsky, Davide Maiorca, Dominik Macko, Vashek Matyás, G. Giacinto
{"title":"A Longitudinal Study of Cryptographic API - a Decade of Android Malware","authors":"Adam Janovsky, Davide Maiorca, Dominik Macko, Vashek Matyás, G. Giacinto","doi":"10.48550/arXiv.2205.05573","DOIUrl":null,"url":null,"abstract":"Cryptography has been extensively used in Android applications to guarantee secure communications, conceal critical data from reverse engineering, or ensure mobile users' privacy. Various system-based and third-party libraries for Android provide cryptographic functionalities, and previous works mainly explored the misuse of cryptographic API in benign applications. However, the role of cryptographic API has not yet been explored in Android malware. This paper performs a comprehensive, longitudinal analysis of cryptographic API in Android malware. In particular, we analyzed $603\\,937$ Android applications (half of them malicious, half benign) released between $2012$ and $2020$, gathering more than 1 million cryptographic API expressions. Our results reveal intriguing trends and insights on how and why cryptography is employed in Android malware. For instance, we point out the widespread use of weak hash functions and the late transition from insecure DES to AES. Additionally, we show that cryptography-related characteristics can help to improve the performance of learning-based systems in detecting malicious applications.","PeriodicalId":74779,"journal":{"name":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","volume":"13 1","pages":"121-133"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.05573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptography has been extensively used in Android applications to guarantee secure communications, conceal critical data from reverse engineering, or ensure mobile users' privacy. Various system-based and third-party libraries for Android provide cryptographic functionalities, and previous works mainly explored the misuse of cryptographic API in benign applications. However, the role of cryptographic API has not yet been explored in Android malware. This paper performs a comprehensive, longitudinal analysis of cryptographic API in Android malware. In particular, we analyzed $603\,937$ Android applications (half of them malicious, half benign) released between $2012$ and $2020$, gathering more than 1 million cryptographic API expressions. Our results reveal intriguing trends and insights on how and why cryptography is employed in Android malware. For instance, we point out the widespread use of weak hash functions and the late transition from insecure DES to AES. Additionally, we show that cryptography-related characteristics can help to improve the performance of learning-based systems in detecting malicious applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加密API的纵向研究——Android恶意软件的十年
密码学已广泛用于Android应用程序,以保证安全通信,隐藏关键数据从逆向工程,或确保移动用户的隐私。各种基于系统和第三方的Android库都提供了加密功能,以前的工作主要是探索加密API在良性应用程序中的滥用。然而,加密API在Android恶意软件中的作用尚未被探索。本文对Android恶意软件中的加密API进行了全面的纵向分析。特别是,我们分析了2012年至2020年期间发布的603,937美元Android应用程序(其中一半是恶意的,一半是良性的),收集了超过100万个加密API表达式。我们的研究结果揭示了Android恶意软件如何以及为什么使用加密技术的有趣趋势和见解。例如,我们指出弱散列函数的广泛使用以及从不安全的DES到AES的较晚转换。此外,我们还表明,与密码学相关的特征可以帮助提高基于学习的系统在检测恶意应用程序方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illicit Darkweb Classification via Natural-language Processing: Classifying Illicit Content of Webpages based on Textual Information When the Few Outweigh the Many: Illicit Content Recognition with Few-Shot Learning SQLi Detection with ML: A data-source perspective Combining Generators of Adversarial Malware Examples to Increase Evasion Rate CAPoW: Context-Aware AI-Assisted Proof of Work based DDoS Defense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1