Boris Kantor, Bernadette Odonovan, Joseph Rittiner, Dellila Hodgson, Nicholas Lindner, Sophia Guerrero, Wendy Dong, Austin Zhang, Ornit Chiba-Falek
{"title":"All-in-one AAV-delivered epigenome-editing platform: <i>proof-of-concept</i> and therapeutic implications for neurodegenerative disorders.","authors":"Boris Kantor, Bernadette Odonovan, Joseph Rittiner, Dellila Hodgson, Nicholas Lindner, Sophia Guerrero, Wendy Dong, Austin Zhang, Ornit Chiba-Falek","doi":"10.1101/2023.04.14.536951","DOIUrl":null,"url":null,"abstract":"<p><p>Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and the recently discovered bacterial CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Current state-of-the-art systems consist of a deactivated-Cas9 nuclease (dCas9) fused to one of several epigenetic effector motifs/domains, along with a guide RNA (gRNA) which defines the genomic target. Such systems have been used to safely and effectively silence or activate a specific gene target under a variety of circumstances. Adeno-associated vectors (AAVs) are the therapeutic platform of choice for the delivery of genetic cargo; however, their small packaging capacity is not suitable for delivery of large constructs, which includes most CRISPR/dCas9-effector systems. To circumvent this, many AAV-based CRISPR/Cas tools are delivered in two pieces, from two separate viral cassettes. However, this approach requires higher viral payloads and usually is less efficient. Here we develop a compact dCas9-based repressor system packaged within a single, optimized AAV vector. The system uses a smaller dCas9 variant derived from <i>Staphylococcus aureus</i> ( <i>Sa</i> ). A novel repressor was engineered by fusing the small transcription repression domain (TRD) from MeCP2 with the KRAB repression domain. The final d <i>Sa</i> Cas9-KRAB-MeCP2(TRD) construct can be efficiently packaged, along with its associated gRNA, into AAV particles. Using reporter assays, we demonstrate that the platform is capable of robustly and sustainably repressing the expression of multiple genes-of-interest, both <i>in vitro</i> and <i>in vivo</i> . Moreover, we successfully reduced the expression of ApoE, the stronger genetic risk factor for late onset Alzheimer's disease (LOAD). This new platform will broaden the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.</p>","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"21 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.14.536951","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and the recently discovered bacterial CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Current state-of-the-art systems consist of a deactivated-Cas9 nuclease (dCas9) fused to one of several epigenetic effector motifs/domains, along with a guide RNA (gRNA) which defines the genomic target. Such systems have been used to safely and effectively silence or activate a specific gene target under a variety of circumstances. Adeno-associated vectors (AAVs) are the therapeutic platform of choice for the delivery of genetic cargo; however, their small packaging capacity is not suitable for delivery of large constructs, which includes most CRISPR/dCas9-effector systems. To circumvent this, many AAV-based CRISPR/Cas tools are delivered in two pieces, from two separate viral cassettes. However, this approach requires higher viral payloads and usually is less efficient. Here we develop a compact dCas9-based repressor system packaged within a single, optimized AAV vector. The system uses a smaller dCas9 variant derived from Staphylococcus aureus ( Sa ). A novel repressor was engineered by fusing the small transcription repression domain (TRD) from MeCP2 with the KRAB repression domain. The final d Sa Cas9-KRAB-MeCP2(TRD) construct can be efficiently packaged, along with its associated gRNA, into AAV particles. Using reporter assays, we demonstrate that the platform is capable of robustly and sustainably repressing the expression of multiple genes-of-interest, both in vitro and in vivo . Moreover, we successfully reduced the expression of ApoE, the stronger genetic risk factor for late onset Alzheimer's disease (LOAD). This new platform will broaden the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.