Rotor dynamics and stator vibrations of a novel IPM synchronous motor

R. Goraj, A. Spagnolo
{"title":"Rotor dynamics and stator vibrations of a novel IPM synchronous motor","authors":"R. Goraj, A. Spagnolo","doi":"10.7494/MECH.2015.34.1.9","DOIUrl":null,"url":null,"abstract":"The paper presents rotor-dynamical computations of a technology demonstrator of an interior permanent magnet (IPM) synchronous motor that was designed at the Research and Technology Centre of Siemens AG in the framework of the European funded project named MotorBrain. The computations were split into parts consisting modal and harmonic analysis performed numerically using FEM algorithms and the post-processing estimation of the amplitudes of rotor displacement and velocity in the whole range of motor rotation speed. Authors determined modal damping ratios of different oscillation modes and found values of resonance frequencies. In a further step forces were applied to the rotor in order to determine oscillation amplitudes of points placed along the rotor geometrical axis in the case of both mechanically and electromagnetically excited rotor. The computations were performed for the excitation of the first and the second flexural vibration. Except of rotor-dynamical computations authors performed vibration analyses of the stator together with the motor housing. The stator resonance frequencies and its modal deformation shapes were determined. In a further step electromagnetic forces acting on stator teeth were numerically found. These forces were then applied on each stator tooth in order to perform harmonic vibration analyses and determined the spatial average velocity of motor housing circumference area .","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"4 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2015.34.1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents rotor-dynamical computations of a technology demonstrator of an interior permanent magnet (IPM) synchronous motor that was designed at the Research and Technology Centre of Siemens AG in the framework of the European funded project named MotorBrain. The computations were split into parts consisting modal and harmonic analysis performed numerically using FEM algorithms and the post-processing estimation of the amplitudes of rotor displacement and velocity in the whole range of motor rotation speed. Authors determined modal damping ratios of different oscillation modes and found values of resonance frequencies. In a further step forces were applied to the rotor in order to determine oscillation amplitudes of points placed along the rotor geometrical axis in the case of both mechanically and electromagnetically excited rotor. The computations were performed for the excitation of the first and the second flexural vibration. Except of rotor-dynamical computations authors performed vibration analyses of the stator together with the motor housing. The stator resonance frequencies and its modal deformation shapes were determined. In a further step electromagnetic forces acting on stator teeth were numerically found. These forces were then applied on each stator tooth in order to perform harmonic vibration analyses and determined the spatial average velocity of motor housing circumference area .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型IPM同步电动机转子动力学与定子振动
本文介绍了西门子公司研究与技术中心在欧洲资助项目MotorBrain框架下设计的内置永磁(IPM)同步电机技术演示器的转子动力学计算。计算分为模态分析和谐波分析两部分,采用有限元算法进行数值分析,并对整个电机转速范围内的转子位移和速度幅值进行后处理估计。测定了不同振型的模态阻尼比,得到了共振频率值。在进一步的步骤中,为了确定在机械和电磁激励转子的情况下沿转子几何轴放置的点的振荡幅度,对转子施加了力。对第一次和第二次弯曲振动的激励进行了计算。除转子动力学计算外,还对定子和电机壳体进行了振动分析。确定了定子谐振频率及其模态变形形状。在进一步的步骤,电磁力作用在定子齿数值发现。然后将这些力施加到每个定子齿上,以便进行谐波振动分析并确定电机外壳周长区域的空间平均速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanics and Control
International Journal of Mechanics and Control Engineering-Computational Mechanics
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
PHYSICAL MODEL OF VEHICLE ENGINE MOUNT WITH MAGNETORHEOLOGICAL DAMPER EXPERIMENTAL INVESTIGATIONS ON ENERGY HARVESTING FROM MECHANICAL VIBRATIONS OF BUILDINGS USING MACRO FIBER COMPOSITE THE APPLICATION OF SELF-EXCITED VIBRATIONS FOR DYNAMIC STRAIN MEASUREMENTS CARRIED OUT BY VIBRATING WIRE TENSOMETERS Complete kinematic analysis of the Stewart-Gough platform by unit quaternions TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1