{"title":"EXPERIMENTAL INVESTIGATIONS ON ENERGY HARVESTING FROM MECHANICAL VIBRATIONS OF BUILDINGS USING MACRO FIBER COMPOSITE","authors":"D. Grzybek, Piotr Micek","doi":"10.7494/MECH.2016.35.1.1","DOIUrl":null,"url":null,"abstract":"The monitoring of a structure (e.g., a building) enables safe utilization of such a structure. A large number of sensors that measure selected parameters are often required in applied monitoring systems. Cables or batteries are used to power such sensors. This leads to an increase in utilization costs, as the cables have to be spatially located in a monitored building structure, or batteries have to be changed periodically. The use of the natural properties of piezoelectric materials that convert mechanical energy into electrical energy in places where sensors are mounted is a promising field of wireless monitoring system development. This article presents the results of an experimental study for an energy harvesting system using a piezoelectric composite – the Macro Fiber Composite (MFC). The device used for energy harvesting has a beam structure that was achieved by gluing steel and MFC together. In laboratory research, the characteristics of generated currents and electrical power were obtained for several values of vibration amplitude. The most important conclusion was that the resonant frequency of a piezoelectric beam generator should be established (by the selection of proper dimension or/and mass) both for the vibration frequency of the monitored mechanical structure and the vibration amplitude of this structure.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"22 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2016.35.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The monitoring of a structure (e.g., a building) enables safe utilization of such a structure. A large number of sensors that measure selected parameters are often required in applied monitoring systems. Cables or batteries are used to power such sensors. This leads to an increase in utilization costs, as the cables have to be spatially located in a monitored building structure, or batteries have to be changed periodically. The use of the natural properties of piezoelectric materials that convert mechanical energy into electrical energy in places where sensors are mounted is a promising field of wireless monitoring system development. This article presents the results of an experimental study for an energy harvesting system using a piezoelectric composite – the Macro Fiber Composite (MFC). The device used for energy harvesting has a beam structure that was achieved by gluing steel and MFC together. In laboratory research, the characteristics of generated currents and electrical power were obtained for several values of vibration amplitude. The most important conclusion was that the resonant frequency of a piezoelectric beam generator should be established (by the selection of proper dimension or/and mass) both for the vibration frequency of the monitored mechanical structure and the vibration amplitude of this structure.