Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization

N. Bhalaji
{"title":"Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization","authors":"N. Bhalaji","doi":"10.36548/jscp.2021.3.008","DOIUrl":null,"url":null,"abstract":"In recent days, we face workload and time series issue in cloud computing. This leads to wastage of network, computing and resources. To overcome this issue we have used integrated deep learning approach in our proposed work. Accurate prediction of workload and resource allocation with time series enhances the performance of the network. Initially the standard deviation is reduced by applying logarithmic operation and then powerful filters are adopted to remove the extreme points and noise interference. Further the time series is predicted by integrated deep learning method. This method accurately predicts the workload and sequence of resource along with time series. Then the obtained data is standardized by a Min-Max scalar and the quality of the network is preserved by incorporating network model. Finally our proposed method is compared with other currently used methods and the results are obtained.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jscp.2021.3.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In recent days, we face workload and time series issue in cloud computing. This leads to wastage of network, computing and resources. To overcome this issue we have used integrated deep learning approach in our proposed work. Accurate prediction of workload and resource allocation with time series enhances the performance of the network. Initially the standard deviation is reduced by applying logarithmic operation and then powerful filters are adopted to remove the extreme points and noise interference. Further the time series is predicted by integrated deep learning method. This method accurately predicts the workload and sequence of resource along with time series. Then the obtained data is standardized by a Min-Max scalar and the quality of the network is preserved by incorporating network model. Finally our proposed method is compared with other currently used methods and the results are obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度对数网络的云负载估计与时间序列优化
近年来,我们面临着云计算的工作量和时间序列问题。这导致了网络、计算和资源的浪费。为了克服这个问题,我们在我们提出的工作中使用了集成的深度学习方法。利用时间序列对工作负载和资源分配进行准确的预测,提高了网络的性能。首先采用对数运算减小标准差,然后采用强力滤波器去除极值点和噪声干扰。进一步采用综合深度学习方法对时间序列进行预测。该方法随时间序列准确地预测了资源的工作负荷和顺序。然后用最小-最大标量对得到的数据进行标准化,并结合网络模型保持网络的质量。最后,将本文提出的方法与目前常用的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1