Chia-Hsu Hsieh, Yi-Chan Yeh, Le-Quyen Ly, Guan-Jie Su, Shao-En Tsai, Yu-Hua Ye, Yu-Cheng Lin, I. Huang
{"title":"Extended-gate field-effect transistor-based pesticide microsensor for the detection of organophosphorus and carbamate","authors":"Chia-Hsu Hsieh, Yi-Chan Yeh, Le-Quyen Ly, Guan-Jie Su, Shao-En Tsai, Yu-Hua Ye, Yu-Cheng Lin, I. Huang","doi":"10.1117/1.JMM.18.1.015002","DOIUrl":null,"url":null,"abstract":"Abstract. Using microelectromechanical systems technology, a high-performance extended-gate field-effect transistor (EGFET)-based pesticide microsensor for organophosphorus and carbamate (CM) detection is developed. To minimize the whole pesticide-sensing system, we also integrated a planar Ti/Ag/AgCl/KCl-gel microreference electrode into the same silicon chip. The total dimensions of the proposed pesticide-sensing system are only 0.92 × 0.95 × 0.1 cm3. This EGFET-based microsensor for organophosphorus and CMs demonstrates extremely high sensitivity (194 and 268.1 mV/dec, respectively) and sensing linearity (0.993 and 0.974, respectively) and extremely low response time (120 and 300 s, respectively). The microsensor detection limit for both pesticides is 0.001 ppm.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"2007 1","pages":"015002 - 015002"},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.1.015002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Using microelectromechanical systems technology, a high-performance extended-gate field-effect transistor (EGFET)-based pesticide microsensor for organophosphorus and carbamate (CM) detection is developed. To minimize the whole pesticide-sensing system, we also integrated a planar Ti/Ag/AgCl/KCl-gel microreference electrode into the same silicon chip. The total dimensions of the proposed pesticide-sensing system are only 0.92 × 0.95 × 0.1 cm3. This EGFET-based microsensor for organophosphorus and CMs demonstrates extremely high sensitivity (194 and 268.1 mV/dec, respectively) and sensing linearity (0.993 and 0.974, respectively) and extremely low response time (120 and 300 s, respectively). The microsensor detection limit for both pesticides is 0.001 ppm.