{"title":"Mechanical properties determination of dual-phase steels using uniaxial tensile and hydraulic bulge test","authors":"Rui Amaral , Abel D. Santosa , A.B. Lopes","doi":"10.1016/j.ctmat.2016.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulations of sheet metal forming processes need the establishment of highly reliable results, which in turn need the accurate identification of mechanical properties. In this paper a study is presented on the choice of the characterization function of flow stress-strain curve of sheet metal materials, as well as the selection of the best yield locus, based on experimental uniaxial tensile and biaxial hydraulic bulge tests performed on dual-phase steels of industrial interest. To obtain a better characterization of the hardening curve, a combination is made using the uniaxial tensile test data with biaxial hydraulic bulge test results, since bulge test covers a larger range of plastic strain when compared to tensile test. Since the two flow curves have different strain paths, they can’t be directly compared or combined. Therefore, it is necessary a transformation of flow stress-strain curve provided from biaxial bulge test into equivalent stress-strain curve. Different methodologies were applied to transform biaxial stress-strain curve to an equivalent one and the different results are compared and evaluated.</p></div>","PeriodicalId":10198,"journal":{"name":"Ciência & Tecnologia dos Materiais","volume":"29 1","pages":"Pages e239-e243"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ctmat.2016.06.007","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência & Tecnologia dos Materiais","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0870831217300277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Numerical simulations of sheet metal forming processes need the establishment of highly reliable results, which in turn need the accurate identification of mechanical properties. In this paper a study is presented on the choice of the characterization function of flow stress-strain curve of sheet metal materials, as well as the selection of the best yield locus, based on experimental uniaxial tensile and biaxial hydraulic bulge tests performed on dual-phase steels of industrial interest. To obtain a better characterization of the hardening curve, a combination is made using the uniaxial tensile test data with biaxial hydraulic bulge test results, since bulge test covers a larger range of plastic strain when compared to tensile test. Since the two flow curves have different strain paths, they can’t be directly compared or combined. Therefore, it is necessary a transformation of flow stress-strain curve provided from biaxial bulge test into equivalent stress-strain curve. Different methodologies were applied to transform biaxial stress-strain curve to an equivalent one and the different results are compared and evaluated.