Geopolymers were synthesized using metakaolin obtained from the waste of white paper pulping process. The waste is mainly composed by cellulose, calcium carbonate and kaolin. Chemical and physical procedures were conducted aiming to separate its components and obtain metakaolin. The cellulose was eliminated by burning the waste at 450 °C. The CaCO3 was removed by reacting the material with a 1.8 M HCl solution. The purified kaolin went through heat treatment 850 °C for 2 h, in order to be transformed into metakaolin by dehydroxylation. Geopolymers were produced to assess the performance of the resulting metakaolin. The aluminosilicate alkaline activation was executed using four solutions - composed of 8 M and 12 M of KOH and NaOH, each combined with Na2SiO3 in a 2:1 fixed ratio. The results pointed out that the metakaolin obtained from the waste treatment was a quality one, enabling it to be applied in the development of geopolymers.
Medium density fiberboard (MDF) is one of the wood composites which are used widely in the furniture industry. Therefore, its strengthening is required. Sandwiched material is manufactured by inserting sugarcane bagasse medium density fiberboard between the glass fiber reinforced laminates in just the same fashion as a sandwich. A hand lay-up technique is used to prepare the sandwiched specimen, in which the medium density fiberboard plate is put in between two woven layers of glass fiber epoxy laminates. Tensile and bending tests are done to investigate efficiently the tensile and flexural behaviors for the MDF strengthening process. In addition, compact tension and center notch specimen tests are carried out to obtain the effect of the modification performed for the MDF main material on fracture toughness. Moreover, a water soaking test is held out, and fungal bioassay resistance is investigated to obtain some of the novel material environments. The results illustrate that both tensile and flexural strength are extremely modified and increased. Besides, the results show compatibility and bonding between layered material and medium density fiberboard plate. The fracture toughness is greatly increased, and both tests can be met as regards fracture toughness tests for such novel composite material. The novel material has high resistance to fungal creation, which helps it to be utilized in medical furniture. Finally, it is found that only a very little percentage of absorption is established for the novel produced material.
Natural fibres, nowadays; have become the matter of discussion in the research field amongst various scientists to inculcate it in the formation of composites instead of production of composites using synthetic fibres like glass, carbon and aramid. This is due to various advantages associated with natural fibres like eco-friendly, low cost, availability in abundance and its bio-degradability. Lots of work has been carried out in the production of natural fibre reinforced polymer composites, using natural fibres like jute, hemp, cotton, sisal, kenaf, bagasse, areca, abaca, bamboo etc. and their properties have been studied. Here is an attempt made on the literature survey of areca fibre reinforced polymer composites where different properties of areca fibres, its maturity level, surface treatment effect on properties of fibres, composite formation with different matrices, its mechanical properties, thermal and acoustic properties related to different composites has been highlighted.