Photonic-accelerated AI for cybersecurity in sustainable 6G networks

E. Paolini, L. Valcarenghi, Luca Maggiani, N. Andriolli
{"title":"Photonic-accelerated AI for cybersecurity in sustainable 6G networks","authors":"E. Paolini, L. Valcarenghi, Luca Maggiani, N. Andriolli","doi":"10.1109/EuCNC/6GSummit58263.2023.10188264","DOIUrl":null,"url":null,"abstract":"The sixth generation (6G) of mobile communications, expected to be deployed around the year 2030, is predicted to be characterized by ubiquitous connected intelligence. With Artificial Intelligence (AI) operations being deployed in every aspect of future network infrastructure, network security will also evolve from current solutions to intelligent architectures. To meet the massive amount of operations computed by AI models, photonic hardware can be exploited, delivering higher processing speed and computing density and lower power consumption with respect to electronic counterparts. In this paper, we propose a photonic-based Convolutional Neural Network (CNN) solution able to work on real-time traffic, capable of identifying Denial of Service (DoS) Hulk attacks with 99.73 mean F1-score when exploiting 4 bits. We also compared photonic accelerators with their electronic counterparts, showing limited F1-score degradation, especially in the 4 and 8 bit scenarios.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"23 1","pages":"341-346"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sixth generation (6G) of mobile communications, expected to be deployed around the year 2030, is predicted to be characterized by ubiquitous connected intelligence. With Artificial Intelligence (AI) operations being deployed in every aspect of future network infrastructure, network security will also evolve from current solutions to intelligent architectures. To meet the massive amount of operations computed by AI models, photonic hardware can be exploited, delivering higher processing speed and computing density and lower power consumption with respect to electronic counterparts. In this paper, we propose a photonic-based Convolutional Neural Network (CNN) solution able to work on real-time traffic, capable of identifying Denial of Service (DoS) Hulk attacks with 99.73 mean F1-score when exploiting 4 bits. We also compared photonic accelerators with their electronic counterparts, showing limited F1-score degradation, especially in the 4 and 8 bit scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可持续6G网络中的光子加速人工智能网络安全
预计在2030年左右部署的第六代移动通信(6G)将以无处不在的连接智能为特征。随着人工智能(AI)操作部署在未来网络基础设施的各个方面,网络安全也将从当前的解决方案发展到智能架构。为了满足人工智能模型计算的大量操作,可以利用光子硬件,相对于电子同行,提供更高的处理速度和计算密度以及更低的功耗。在本文中,我们提出了一种基于光子的卷积神经网络(CNN)解决方案,能够处理实时流量,能够识别拒绝服务(DoS)浩克攻击,在利用4位时平均f1得分为99.73。我们还将光子加速器与电子加速器进行了比较,显示出有限的f1分数下降,特别是在4位和8位场景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1