Prediction of Selenoproteins Based on Motif Recognition

Lan Tao, Geng Liu, Xiaoli Wang, Lei Zhang
{"title":"Prediction of Selenoproteins Based on Motif Recognition","authors":"Lan Tao, Geng Liu, Xiaoli Wang, Lei Zhang","doi":"10.1109/BMEI.2009.5302720","DOIUrl":null,"url":null,"abstract":"At present available computational methods can not predict selenoproteins correctly because of the special features of selenoproteins. It is known that there are some conservative sections around U in selenoproteins from previous research. So we bring forward a new method to predict selenoproteins based on motif recognition, we use Multiple Em for Motif Elicitation (MEME) to discover motif around U in selenoproteins and then predict selenoproteins based on the motif. The new method found all the selenoproteins in 9 seleno families expect one false positive in family of GPX1 and one in SelS. From the experiment, it is showed that this method can effectively predict almost all the selenoproteins in the known seleno families, and better than the methods of locating the position of U and blasting the Sec/Cys pairing based on handcraft.","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5302720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present available computational methods can not predict selenoproteins correctly because of the special features of selenoproteins. It is known that there are some conservative sections around U in selenoproteins from previous research. So we bring forward a new method to predict selenoproteins based on motif recognition, we use Multiple Em for Motif Elicitation (MEME) to discover motif around U in selenoproteins and then predict selenoproteins based on the motif. The new method found all the selenoproteins in 9 seleno families expect one false positive in family of GPX1 and one in SelS. From the experiment, it is showed that this method can effectively predict almost all the selenoproteins in the known seleno families, and better than the methods of locating the position of U and blasting the Sec/Cys pairing based on handcraft.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基序识别的硒蛋白预测
由于硒蛋白的特殊性质,现有的计算方法不能正确预测硒蛋白。根据以往的研究,硒蛋白中U附近存在一些保守区。为此,我们提出了一种基于基序识别的预测硒蛋白的新方法,即利用多模态模序激发(Multiple Em for motif Elicitation, MEME)技术发现硒蛋白中U周围的基序,并基于该基序预测硒蛋白。新方法在9个硒蛋白家族中发现了除GPX1家族和SelS家族中的一个假阳性外的所有硒蛋白。实验结果表明,该方法能有效预测已知硒蛋白家族中几乎所有的硒蛋白,且优于手工定位U和爆破Sec/Cys配对的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Approach for Blood Vessel Edge Detection in Retinal Images Skin Response During Irradiation by Intense Pulsed Light Based on Optical Imaging Technology and Histology Physical Properties of LYSO Scintillator for NN-PET Detectors A High Security Framework for SMS An Efficient Antenna Selection Algorithm for MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1