Dynamic ranking and translation synchronization

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2022-07-04 DOI:10.1093/imaiai/iaad029
E. Araya, Eglantine Karl'e, Hemant Tyagi
{"title":"Dynamic ranking and translation synchronization","authors":"E. Araya, Eglantine Karl'e, Hemant Tyagi","doi":"10.1093/imaiai/iaad029","DOIUrl":null,"url":null,"abstract":"\n In many applications, such as sport tournaments or recommendation systems, we have at our disposal data consisting of pairwise comparisons between a set of $n$ items (or players). The objective is to use these data to infer the latent strength of each item and/or their ranking. Existing results for this problem predominantly focus on the setting consisting of a single comparison graph $G$. However, there exist scenarios (e.g. sports tournaments) where the pairwise comparison data evolve with time. Theoretical results for this dynamic setting are relatively limited, and are the focus of this paper. We study an extension of the translation synchronization problem, to the dynamic setting. In this set-up, we are given a sequence of comparison graphs $(G_t)_{t\\in{{\\mathscr{T}}}}$, where $ {{\\mathscr{T}}} \\subset [0,1]$ is a grid representing the time domain, and for each item $i$ and time $t\\in{{\\mathscr{T}}}$ there is an associated unknown strength parameter $z^*_{t,i}\\in{{\\mathbb{R}}}$. We aim to recover, for $t\\in{{\\mathscr{T}}}$, the strength vector $z^*_t=(z^*_{t,1},\\dots ,z^*_{t,n})$ from noisy measurements of $z^*_{t,i}-z^*_{t,j}$, where $\\left \\{{i,j}\\right \\}$ is an edge in $G_t$. Assuming that $z^*_t$ evolves smoothly in $t$, we propose two estimators—one based on a smoothness-penalized least squares approach and the other based on projection onto the low-frequency eigenspace of a suitable smoothness operator. For both estimators, we provide finite sample bounds for the $\\ell _2$ estimation error under the assumption that $G_t$ is connected for all $t\\in{{\\mathscr{T}}}$, thus proving the consistency of the proposed methods in terms of the grid size $|\\mathscr{T}|$. We complement our theoretical findings with experiments on synthetic and real data.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In many applications, such as sport tournaments or recommendation systems, we have at our disposal data consisting of pairwise comparisons between a set of $n$ items (or players). The objective is to use these data to infer the latent strength of each item and/or their ranking. Existing results for this problem predominantly focus on the setting consisting of a single comparison graph $G$. However, there exist scenarios (e.g. sports tournaments) where the pairwise comparison data evolve with time. Theoretical results for this dynamic setting are relatively limited, and are the focus of this paper. We study an extension of the translation synchronization problem, to the dynamic setting. In this set-up, we are given a sequence of comparison graphs $(G_t)_{t\in{{\mathscr{T}}}}$, where $ {{\mathscr{T}}} \subset [0,1]$ is a grid representing the time domain, and for each item $i$ and time $t\in{{\mathscr{T}}}$ there is an associated unknown strength parameter $z^*_{t,i}\in{{\mathbb{R}}}$. We aim to recover, for $t\in{{\mathscr{T}}}$, the strength vector $z^*_t=(z^*_{t,1},\dots ,z^*_{t,n})$ from noisy measurements of $z^*_{t,i}-z^*_{t,j}$, where $\left \{{i,j}\right \}$ is an edge in $G_t$. Assuming that $z^*_t$ evolves smoothly in $t$, we propose two estimators—one based on a smoothness-penalized least squares approach and the other based on projection onto the low-frequency eigenspace of a suitable smoothness operator. For both estimators, we provide finite sample bounds for the $\ell _2$ estimation error under the assumption that $G_t$ is connected for all $t\in{{\mathscr{T}}}$, thus proving the consistency of the proposed methods in terms of the grid size $|\mathscr{T}|$. We complement our theoretical findings with experiments on synthetic and real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态排序和翻译同步
在许多应用程序中,例如体育比赛或推荐系统,我们可以处理由一组$n$项目(或玩家)之间的两两比较组成的数据。目的是使用这些数据来推断每个项目的潜在强度和/或它们的排名。该问题的现有结果主要集中在由单个比较图$G$组成的设置上。然而,在某些情况下(例如体育比赛),两两比较数据会随着时间的推移而变化。这一动态设置的理论结果相对有限,是本文的重点。本文将翻译同步问题推广到动态环境。在这个设置中,我们得到了一系列比较图$(G_t)_{t\in{{\mathscr{T}}}}$,其中$ {{\mathscr{T}}} \subset [0,1]$是表示时域的网格,对于每个项目$i$和时间$t\in{{\mathscr{T}}}$,都有一个相关的未知强度参数$z^*_{t,i}\in{{\mathbb{R}}}$。对于$t\in{{\mathscr{T}}}$,我们的目标是从$z^*_{t,i}-z^*_{t,j}$的噪声测量中恢复强度向量$z^*_t=(z^*_{t,1},\dots ,z^*_{t,n})$,其中$\left \{{i,j}\right \}$是$G_t$的一条边。假设$z^*_t$在$t$中平滑演化,我们提出了两个估计器——一个基于平滑惩罚最小二乘方法,另一个基于投影到合适的平滑算子的低频特征空间。对于这两个估计器,我们在假设$G_t$对所有$t\in{{\mathscr{T}}}$都是连通的情况下为$\ell _2$估计误差提供了有限的样本边界,从而证明了所提出的方法在网格大小$|\mathscr{T}|$方面的一致性。我们用合成和真实数据的实验来补充我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1