Psychological Effects of Urban Crime Gleaned from Social Media

Jose Manuel Delgado Valdes, Jacob Eisenstein, M. Choudhury
{"title":"Psychological Effects of Urban Crime Gleaned from Social Media","authors":"Jose Manuel Delgado Valdes, Jacob Eisenstein, M. Choudhury","doi":"10.1609/icwsm.v9i1.14665","DOIUrl":null,"url":null,"abstract":"Exposure to frequent crime incidents has been found to have a negative bearing on the well-being of city residents, even if they are not themselves a direct victim. We pursue the research question of whether naturalistic data shared on Twitter may provide a \"lens\" to understand changes in psychological attributes of urban communities (1) immediately following crime incidents, as well as (2) due to long-term exposure to crime. We analyze half a million Twitter posts from the City of Atlanta in 2014, where the rate of violent crime is three times of the national average. In a first study, we develop a statistical method to detect changes in social media psychological attributes in the immediate aftermath of a crime event. Second, we develop a regression model that uses historical (yearlong) crime to predict Twitter negative emotion, anxiety, anger, and sadness. We do not find significant changes in social media affect immediately following crime in Atlanta. However we do observe significant ability of historical crime to account for heightened negative emotion and anger in the future. Our findings have implications in gauging the utility of social media to infer longitudinal and population-scale patterns of urban well-being.","PeriodicalId":74525,"journal":{"name":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","volume":"69 1","pages":"598-601"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v9i1.14665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Exposure to frequent crime incidents has been found to have a negative bearing on the well-being of city residents, even if they are not themselves a direct victim. We pursue the research question of whether naturalistic data shared on Twitter may provide a "lens" to understand changes in psychological attributes of urban communities (1) immediately following crime incidents, as well as (2) due to long-term exposure to crime. We analyze half a million Twitter posts from the City of Atlanta in 2014, where the rate of violent crime is three times of the national average. In a first study, we develop a statistical method to detect changes in social media psychological attributes in the immediate aftermath of a crime event. Second, we develop a regression model that uses historical (yearlong) crime to predict Twitter negative emotion, anxiety, anger, and sadness. We do not find significant changes in social media affect immediately following crime in Atlanta. However we do observe significant ability of historical crime to account for heightened negative emotion and anger in the future. Our findings have implications in gauging the utility of social media to infer longitudinal and population-scale patterns of urban well-being.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从社交媒体收集的城市犯罪心理影响
研究发现,频繁的犯罪事件对城市居民的幸福感有负面影响,即使他们自己不是直接受害者。我们追求的研究问题是,Twitter上分享的自然主义数据是否可以提供一个“镜头”来理解城市社区(1)犯罪事件发生后的心理属性变化,以及(2)由于长期暴露于犯罪。我们分析了2014年亚特兰大市的50万条推特帖子,那里的暴力犯罪率是全国平均水平的三倍。在第一项研究中,我们开发了一种统计方法来检测犯罪事件发生后社交媒体心理属性的变化。其次,我们开发了一个回归模型,使用历史(一年)犯罪来预测Twitter的负面情绪,焦虑,愤怒和悲伤。我们没有发现亚特兰大犯罪发生后社交媒体影响的显著变化。然而,我们确实观察到历史犯罪在解释未来的负面情绪和愤怒方面的显著能力。我们的研究结果对衡量社交媒体的效用,以推断城市幸福感的纵向和人口规模模式具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Negative Associations in Word Embeddings Predict Anti-black Bias across Regions-but Only via Name Frequency. Correcting Sociodemographic Selection Biases for Population Prediction from Social Media. Classifying Minority Stress Disclosure on Social Media with Bidirectional Long Short-Term Memory. Classifying Minority Stress Disclosure on Social Media with Bidirectional Long Short-Term Memory Tweet Classification to Assist Human Moderation for Suicide Prevention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1