Construction of LWCNN Framework and its Application to Pedestrian Detection with Segmentation Process

R. Kanthavel
{"title":"Construction of LWCNN Framework and its Application to Pedestrian Detection with Segmentation Process","authors":"R. Kanthavel","doi":"10.36548/jiip.2021.3.008","DOIUrl":null,"url":null,"abstract":"To solve the challenges in traffic object identification, fuzzification, and simplification in a real traffic environment, it is highly required to develop an automatic detection and classification technique for roads, automobiles, and pedestrians with multiple traffic objects inside the same framework. The proposed method has been evaluated on a database with complicated poses, motions, backgrounds, and lighting conditions for an urban scenario where pedestrians are not obstructed. The suggested CNN classifier has an FPR of less than that of the SVM classifier. Confirming the significance of automatically optimized features, the SVM classifier's accuracy is equal to that of the CNN. The proposed framework is integrated with the additional adaptive segmentation method to identify pedestrians more precisely than the conventional techniques. Additionally, the proposed lightweight feature mapping leads to faster calculation times and it has also been verified and tabulated in the results and discussion section.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jiip.2021.3.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the challenges in traffic object identification, fuzzification, and simplification in a real traffic environment, it is highly required to develop an automatic detection and classification technique for roads, automobiles, and pedestrians with multiple traffic objects inside the same framework. The proposed method has been evaluated on a database with complicated poses, motions, backgrounds, and lighting conditions for an urban scenario where pedestrians are not obstructed. The suggested CNN classifier has an FPR of less than that of the SVM classifier. Confirming the significance of automatically optimized features, the SVM classifier's accuracy is equal to that of the CNN. The proposed framework is integrated with the additional adaptive segmentation method to identify pedestrians more precisely than the conventional techniques. Additionally, the proposed lightweight feature mapping leads to faster calculation times and it has also been verified and tabulated in the results and discussion section.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LWCNN框架的构建及其在行人分割检测中的应用
为了解决真实交通环境中交通对象识别、模糊化和简化的难题,迫切需要开发一种对同一框架内多个交通对象的道路、汽车和行人进行自动检测和分类的技术。该方法已经在一个具有复杂姿势、运动、背景和照明条件的数据库上进行了评估,该数据库是在行人不受阻碍的城市场景中进行的。本文提出的CNN分类器的FPR小于SVM分类器。证实了自动优化特征的重要性,SVM分类器的准确率与CNN相当。该框架与附加的自适应分割方法相结合,比传统技术更精确地识别行人。此外,提出的轻量级特征映射导致更快的计算时间,它也在结果和讨论部分得到了验证和列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1