{"title":"Wide Band Gap power semiconductor devices","authors":"J. Millán","doi":"10.1049/iet-cds:20070005","DOIUrl":null,"url":null,"abstract":"It is worldwide accepted that a real breakthrough in Power Electronics mainly comes Wide Band Gap (WBG) semiconductor devices. WBG semiconductors such as SiC, GaN, and diamond show superior material properties, which allow operation at high-switching speed, high-voltage and high-temperature. These unique performances provide a qualitative change in their application to energy processing. From energy generation to the end-user, the electric energy undergoes a number of conversions. Which are currently highly inefficient to the point that it is estimated that only 20% of the whole energy involved in energy generation reaches the end-user. WGB semiconductors increase the conversion efficiency thanks to their outstanding material properties. The recent progress in the development of high-voltage WBG power semiconductor devices, especially SiC and GaN, is reviewed.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"111 1","pages":"293-296"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds:20070005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
Abstract
It is worldwide accepted that a real breakthrough in Power Electronics mainly comes Wide Band Gap (WBG) semiconductor devices. WBG semiconductors such as SiC, GaN, and diamond show superior material properties, which allow operation at high-switching speed, high-voltage and high-temperature. These unique performances provide a qualitative change in their application to energy processing. From energy generation to the end-user, the electric energy undergoes a number of conversions. Which are currently highly inefficient to the point that it is estimated that only 20% of the whole energy involved in energy generation reaches the end-user. WGB semiconductors increase the conversion efficiency thanks to their outstanding material properties. The recent progress in the development of high-voltage WBG power semiconductor devices, especially SiC and GaN, is reviewed.