Quinoline a Versatile Molecular Probe for Zinc Sensor: A Mini-Review

{"title":"Quinoline a Versatile Molecular Probe for Zinc Sensor: A Mini-Review","authors":"","doi":"10.33263/lianbs124.123","DOIUrl":null,"url":null,"abstract":"Fluorescent compounds have attracted a lot of attention because of their vast range of applications like visualization, microscopic techniques, low cost, real-time bio-imaging capabilities, convenience, and simplicity. Fluorescent imaging is the best suitable technology for in vivo monitoring of Zinc, an essential biological element for living organisms. Many fluorescent probes have been developed since the late 1980s, with some applications and issues. To avoid issues like interference from other transition metal ions, insolubility in water, and a difficult synthesis procedure, creating a highly selective Zn2+ sensing system has become an appealing challenge. Because of its good biocompatibility and unique photophysical properties, quinoline is a popular building component for fluorescent chemosensors for transition metals. This review focuses on a specific range of quinoline-based receptors used in Zn2+ ion sensing applications in various biological and environmental conditions.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fluorescent compounds have attracted a lot of attention because of their vast range of applications like visualization, microscopic techniques, low cost, real-time bio-imaging capabilities, convenience, and simplicity. Fluorescent imaging is the best suitable technology for in vivo monitoring of Zinc, an essential biological element for living organisms. Many fluorescent probes have been developed since the late 1980s, with some applications and issues. To avoid issues like interference from other transition metal ions, insolubility in water, and a difficult synthesis procedure, creating a highly selective Zn2+ sensing system has become an appealing challenge. Because of its good biocompatibility and unique photophysical properties, quinoline is a popular building component for fluorescent chemosensors for transition metals. This review focuses on a specific range of quinoline-based receptors used in Zn2+ ion sensing applications in various biological and environmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喹啉:锌传感器的多功能分子探针:综述
荧光化合物因其广泛的应用,如可视化、显微技术、低成本、实时生物成像能力、便利性和简单性而引起了人们的广泛关注。锌是生物体必需的生物元素,荧光成像技术是体内监测锌的最合适技术。自20世纪80年代末以来,许多荧光探针已经开发出来,有一些应用和问题。为了避免其他过渡金属离子的干扰、在水中的不溶性和复杂的合成过程等问题,创建高选择性的Zn2+传感系统已经成为一个吸引人的挑战。喹啉具有良好的生物相容性和独特的光物理性质,是过渡金属荧光化学传感器的常用构建材料。本文综述了在各种生物和环境条件下用于Zn2+离子传感的喹啉类受体的具体范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Morphology and Anti-microbial Studies of Zinc Stannate Nanoparticles Constructed via Green Synthesis Approach Pre-column Derivatization¸ Elution Order, Molecular Configuration and Green Chromatographic Separation of Diastereomeric Derivatives of β-Amino Alcohols Physico-Chemical, Ultrasonic, and Structural Studies on Dextrin with alpha-Amylase in Aqueous Media At 298.15 K A Comprehensive Review on the Antimicrobial and Photocatalytic Properties of Green Synthesized Silver Nanoparticles Sorption Removal of Methylene Blue Dye from Aqueous Solution by Powdered Yellow Flame Tree Flower (Peltophorum pterocarpum)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1