Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate

IF 1.1 Q4 OPTICS Computer Optics Pub Date : 2022-10-01 DOI:10.18287/2412-6179-co-1174
S. Kharitonov, N. L. Kazanskiy, S. G. Volotovsky, S. Khonina
{"title":"Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate","authors":"S. Kharitonov, N. L. Kazanskiy, S. G. Volotovsky, S. Khonina","doi":"10.18287/2412-6179-co-1174","DOIUrl":null,"url":null,"abstract":"The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于介电板谐振腔衍射问题经典解的量子特性计算
这项工作致力于发展衍射光学元件的量子理论。量子光学的各个方面都是通过谐振器中介电板的光衍射的例子来考虑的。本文论述了介电板衍射问题的经典解与量子解之间的联系。得到了这种谐振器的本征模的表达式,以及矢量磁势和电场强度的算符。本文提出的方法可以很容易地推广到具有衍射微浮雕的介质板,即衍射光学元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
期刊最新文献
Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose Gradient method for designing cascaded DOEs and its application in the problem of classifying handwritten digits Method of multilayer object sectioning based on a light scattering model Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1