{"title":"Mitigation of High Temperature Challenges in Limestone Acidizing through the use of Chelating Agents","authors":"Mandeep Khan, M. Qamruzzaman, D. Roy, R. Raman","doi":"10.2118/206039-ms","DOIUrl":null,"url":null,"abstract":"\n Acid jobs with conventional acid systems like hydrochloric acid in high temperature conditions is challenging on various fronts. Enhanced reactivity of strong acids results in poor penetration and severe face dissolution. Also, it aggravates the issue of corrosion of downhole equipment and may also result in sludge formation/asphaltene deposition. Worldwide, chelating agents has emerged as a standalone stimulation fluid for high temperature acidizing. Their unique attributes and properties have been proved very useful for acid jobs at elevated temperatures. However, the chelating agents-based formulations need to be carefully evaluated on various acidization parameters for a fruitful stimulation.\n Mumbai Offshore field has been encountering the above-mentioned problems in acidizing of its high temperature (>275°F) limestone reservoirs. The paper presents innovative solutions devised for high temperature matrix acidizing. Two chelating agents viz., EDTA (Ethylenediaminetetraceticacid) and GLDA (L-Glutamic Acid N, N-diacetic acid) were explored and evaluated with meticulous laboratory studies. The performance of the chelating agent-based stimulation fluid was compared with acetic acid. Slurry tests were performed to quantify the dissolving power of each acid. Consequently, core flooding tests were carried out to to find the optimum pH of the chelating agents from stimulation point of view. Core flooding studies were performed at anticipated injection rates on representative core samples from a payzone A, with BHT 275-290° F, from Mumbai Offshore. pH optimized formulations were tested against N-80 metallurgy coupons at reservoir temperature for corrosion potential estimation. Also, sludge, asphaltene and emulsion formation tendencies were analyzed with representative oil samples.\n The results convey that both EDTA and GLDA were able to mitigate the challenges encountered at elevated temperatures. EDTA and GLDA were found to stimulate the cores with wormholes formed at wide pH range with no face dissolution observed. Chelating agents enjoyed good dissolving power with negligible corrosion rates, absence of sludge and asphaltene deposition, compatibility with formation fluid and excellent iron control properties.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206039-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Acid jobs with conventional acid systems like hydrochloric acid in high temperature conditions is challenging on various fronts. Enhanced reactivity of strong acids results in poor penetration and severe face dissolution. Also, it aggravates the issue of corrosion of downhole equipment and may also result in sludge formation/asphaltene deposition. Worldwide, chelating agents has emerged as a standalone stimulation fluid for high temperature acidizing. Their unique attributes and properties have been proved very useful for acid jobs at elevated temperatures. However, the chelating agents-based formulations need to be carefully evaluated on various acidization parameters for a fruitful stimulation.
Mumbai Offshore field has been encountering the above-mentioned problems in acidizing of its high temperature (>275°F) limestone reservoirs. The paper presents innovative solutions devised for high temperature matrix acidizing. Two chelating agents viz., EDTA (Ethylenediaminetetraceticacid) and GLDA (L-Glutamic Acid N, N-diacetic acid) were explored and evaluated with meticulous laboratory studies. The performance of the chelating agent-based stimulation fluid was compared with acetic acid. Slurry tests were performed to quantify the dissolving power of each acid. Consequently, core flooding tests were carried out to to find the optimum pH of the chelating agents from stimulation point of view. Core flooding studies were performed at anticipated injection rates on representative core samples from a payzone A, with BHT 275-290° F, from Mumbai Offshore. pH optimized formulations were tested against N-80 metallurgy coupons at reservoir temperature for corrosion potential estimation. Also, sludge, asphaltene and emulsion formation tendencies were analyzed with representative oil samples.
The results convey that both EDTA and GLDA were able to mitigate the challenges encountered at elevated temperatures. EDTA and GLDA were found to stimulate the cores with wormholes formed at wide pH range with no face dissolution observed. Chelating agents enjoyed good dissolving power with negligible corrosion rates, absence of sludge and asphaltene deposition, compatibility with formation fluid and excellent iron control properties.