Dr. Amarendranath Choudhury, Neeraj Kumar, S. Kumar, eep, P. Deepak, Ey
{"title":"Biotechnological potential of stem cells","authors":"Dr. Amarendranath Choudhury, Neeraj Kumar, S. Kumar, eep, P. Deepak, Ey","doi":"10.15406/JSRT.2017.03.00090","DOIUrl":null,"url":null,"abstract":"Biotechnology deals with developing strategies using biological systems, living organisms or derivatives aimed to make or modify products or processes for specific use and address a broad range of issues in the fields of agriculture, industry, environment and medicine. Though the term ‘Biotechnology’ is not more than a century old until a Hungarian engineer Karl Ereky coined it in 1919, the concept of biotechnology had its first footstep right since the discovery of fermentation around 7000 BC.1 The subject has a bygone soul with a dynamic nature and promising outlook towards future. Biochemistry, cell biology, pharmacology, immunology, genomics, proteomics, structural biology etc. are relentlessly contributing into biotechnology. Cell-based approaches of biotechnology, particularly focussing on mammalian or human cells, came up in the late 20th century with the advent of procedures for artificial insemination and reproductive cloning.2 In this context, the isolation of inner cell mass from human blastocyst and their characterization as stem cells by the scientists of University of Wisconsin in 1998 set the cornerstone of stem-cell research.3 Table 1 summarizes the chronological progresses in stem cell-research. In this age of Biology, scientists throughout the globe are looking for alternative therapeutic measures using the inherent potential of the stem cells, holding great promise for the treatment of debilitating diseases. Stem cells of different origin and level of potency are being investigated for tissue regeneration, treatment of bone defect, drug testing, gene therapy and cell based therapy for muscle damage, spinal cord injury, cancer therapy etc.4 This review concentrates on types of stem cells and their multidisciplinary applications, mainly as a tool for biotechnological advances in modern therapeutics.","PeriodicalId":91560,"journal":{"name":"Journal of stem cell research & therapeutics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of stem cell research & therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/JSRT.2017.03.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Biotechnology deals with developing strategies using biological systems, living organisms or derivatives aimed to make or modify products or processes for specific use and address a broad range of issues in the fields of agriculture, industry, environment and medicine. Though the term ‘Biotechnology’ is not more than a century old until a Hungarian engineer Karl Ereky coined it in 1919, the concept of biotechnology had its first footstep right since the discovery of fermentation around 7000 BC.1 The subject has a bygone soul with a dynamic nature and promising outlook towards future. Biochemistry, cell biology, pharmacology, immunology, genomics, proteomics, structural biology etc. are relentlessly contributing into biotechnology. Cell-based approaches of biotechnology, particularly focussing on mammalian or human cells, came up in the late 20th century with the advent of procedures for artificial insemination and reproductive cloning.2 In this context, the isolation of inner cell mass from human blastocyst and their characterization as stem cells by the scientists of University of Wisconsin in 1998 set the cornerstone of stem-cell research.3 Table 1 summarizes the chronological progresses in stem cell-research. In this age of Biology, scientists throughout the globe are looking for alternative therapeutic measures using the inherent potential of the stem cells, holding great promise for the treatment of debilitating diseases. Stem cells of different origin and level of potency are being investigated for tissue regeneration, treatment of bone defect, drug testing, gene therapy and cell based therapy for muscle damage, spinal cord injury, cancer therapy etc.4 This review concentrates on types of stem cells and their multidisciplinary applications, mainly as a tool for biotechnological advances in modern therapeutics.