Cytotoxicity Tests on Cultured Rat Skin Fibroblasts Revealed no Toxicity for Low Concentrations of GdYVO4:Eu3+ Nanoparticles

V. Prokopyuk, A. Onishchenko, S. Yefimova, T. Chumachenko, N. Kavok, P. Maksimchuk, V. Klochkov, A. Tkachenko
{"title":"Cytotoxicity Tests on Cultured Rat Skin Fibroblasts Revealed no Toxicity for Low Concentrations of GdYVO4:Eu3+ Nanoparticles","authors":"V. Prokopyuk, A. Onishchenko, S. Yefimova, T. Chumachenko, N. Kavok, P. Maksimchuk, V. Klochkov, A. Tkachenko","doi":"10.1109/NAP51885.2021.9568547","DOIUrl":null,"url":null,"abstract":"Aim. To assess the viability and functional activity of cultured rat skin fibroblasts directly exposed to various concentrations of GdYVO4:Eu3+ nanoparticles.Materials and methods. Cultured rat dermal fibroblasts (n=8) were incubated with GdYVO4:Eu3+ nanoparticles at different concentrations (0 - 320 μg/ml) for 24 h. The cytotoxicity was evaluated in a complex manner. In particular, the MTT assay was used to assess cellular metabolic activity. The viability of cells was quantitatively estimated using the neutral red uptake assay. To evaluate the effects of nanoparticles on the mobility of dermal fibroblasts, the scratch assay was used. Results. Our experimental data demonstrated that the GdYVO4:Eu3+ nanoparticles had no effect on fibroblast viability at any concentration used, evidenced by the results of neutral red uptake assay. However, incubation of cultured fibroblasts starting from the concentration of 80 μg/ml and above increased the metabolic activity of cells, based on the outcome of MTT assay, and promoted the loss of adhesion. Similarly, scratch assay revealed the reduction of fibroblast migration capacity in cells exposed to 80 μg/ml and higher concentrations of nanoparticles. Conclusions. Low concentrations of GdYVO4:Eu3+ (below 40 μg/ml) show no cytotoxic properties towards fibroblasts, while their higher concentrations affect the metabolic activity and functional properties of cells.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aim. To assess the viability and functional activity of cultured rat skin fibroblasts directly exposed to various concentrations of GdYVO4:Eu3+ nanoparticles.Materials and methods. Cultured rat dermal fibroblasts (n=8) were incubated with GdYVO4:Eu3+ nanoparticles at different concentrations (0 - 320 μg/ml) for 24 h. The cytotoxicity was evaluated in a complex manner. In particular, the MTT assay was used to assess cellular metabolic activity. The viability of cells was quantitatively estimated using the neutral red uptake assay. To evaluate the effects of nanoparticles on the mobility of dermal fibroblasts, the scratch assay was used. Results. Our experimental data demonstrated that the GdYVO4:Eu3+ nanoparticles had no effect on fibroblast viability at any concentration used, evidenced by the results of neutral red uptake assay. However, incubation of cultured fibroblasts starting from the concentration of 80 μg/ml and above increased the metabolic activity of cells, based on the outcome of MTT assay, and promoted the loss of adhesion. Similarly, scratch assay revealed the reduction of fibroblast migration capacity in cells exposed to 80 μg/ml and higher concentrations of nanoparticles. Conclusions. Low concentrations of GdYVO4:Eu3+ (below 40 μg/ml) show no cytotoxic properties towards fibroblasts, while their higher concentrations affect the metabolic activity and functional properties of cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对培养大鼠皮肤成纤维细胞的细胞毒性试验显示,低浓度的GdYVO4:Eu3+纳米颗粒无毒性
的目标。目的:观察不同浓度GdYVO4:Eu3+纳米颗粒对培养大鼠皮肤成纤维细胞的影响。材料和方法。将培养的大鼠真皮成纤维细胞(n=8)与不同浓度(0 ~ 320 μg/ml)的GdYVO4:Eu3+纳米颗粒孵育24 h,采用复杂的方法评价其细胞毒性。特别是,MTT法被用来评估细胞代谢活性。用中性红摄取法定量估计细胞活力。为了评估纳米颗粒对真皮成纤维细胞移动性的影响,采用划痕实验。结果。我们的实验数据表明,GdYVO4:Eu3+纳米颗粒在任何浓度下对成纤维细胞的活力都没有影响,中性红色摄取试验的结果证明了这一点。然而,根据MTT实验结果,从80 μg/ml及以上浓度开始培养成纤维细胞,细胞的代谢活性增加,并促进黏附的丧失。同样,划痕实验显示,暴露于80 μg/ml和更高浓度纳米颗粒的细胞成纤维细胞迁移能力降低。结论。低浓度的GdYVO4:Eu3+(低于40 μg/ml)对成纤维细胞没有细胞毒性,而高浓度的GdYVO4:Eu3+会影响细胞的代谢活性和功能特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Prolonged Annealing on Properties of Y2O3 Nanosized Ceramics Influence of Annealing on the Structure and Mechanical Properties of PECVD Si-C-N Films Nickel and Zinc Hydroxycarbonates are Precursors of Nanoscale Oxides Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1