Residual stress measurement methods of optics

Q3 Engineering 光电工程 Pub Date : 2020-08-31 DOI:10.12086/OEE.2020.190068
Xiao Shilei, Li Bincheng
{"title":"Residual stress measurement methods of optics","authors":"Xiao Shilei, Li Bincheng","doi":"10.12086/OEE.2020.190068","DOIUrl":null,"url":null,"abstract":"Residual stress is an important performance indicator of optics, which is of great significance to the fabrications and applications of optical components. Residual stress measurement methods of optics can be summed up into two categories: methods based on the strain measurement and on the stress induced birefringence measurement, respectively. The strain based methods, which are built upon crystal dynamics and elastic mechanics, including X-ray diffraction (XRD), Stoney curvature method, and micro-Raman spectroscopic method, are well developed and widely used. Methods based on the measurements of birefringence phase retardation induced by residual stress, including digital photoelasticity method, photoelasticitic modulator (PEM) method and polarization-dependent cavity ring-down method, show a higher precision. The principles, measurement precisions and application scenarios of these residual stress measurement methods are summarized in this overview. Comparisons between the performances of these methods are performed and correlations between them are analyzed in detail.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Residual stress is an important performance indicator of optics, which is of great significance to the fabrications and applications of optical components. Residual stress measurement methods of optics can be summed up into two categories: methods based on the strain measurement and on the stress induced birefringence measurement, respectively. The strain based methods, which are built upon crystal dynamics and elastic mechanics, including X-ray diffraction (XRD), Stoney curvature method, and micro-Raman spectroscopic method, are well developed and widely used. Methods based on the measurements of birefringence phase retardation induced by residual stress, including digital photoelasticity method, photoelasticitic modulator (PEM) method and polarization-dependent cavity ring-down method, show a higher precision. The principles, measurement precisions and application scenarios of these residual stress measurement methods are summarized in this overview. Comparisons between the performances of these methods are performed and correlations between them are analyzed in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学残余应力测量方法
残余应力是光学元件的一项重要性能指标,对光学元件的制作和应用具有重要意义。光学残余应力测量方法可分为两类:基于应变测量的方法和基于应力诱导双折射测量的方法。基于晶体动力学和弹性力学的应变方法,包括x射线衍射(XRD)、Stoney曲率法和微拉曼光谱法等,已经得到了很好的发展和广泛的应用。基于测量残余应力引起的双折射相位延迟的方法,包括数字光弹性法、光弹性调制器(PEM)法和依赖偏振的腔衰荡法,显示出较高的精度。综述了这些残余应力测量方法的原理、测量精度和应用场景。对这些方法的性能进行了比较,并详细分析了它们之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1