EmoShapelets: Capturing local dynamics of audio-visual affective speech

Y. Shangguan, E. Provost
{"title":"EmoShapelets: Capturing local dynamics of audio-visual affective speech","authors":"Y. Shangguan, E. Provost","doi":"10.1109/ACII.2015.7344576","DOIUrl":null,"url":null,"abstract":"Automatic recognition of emotion in speech is an active area of research. One of the important open challenges relates to how the emotional characteristics of speech change in time. Past research has demonstrated the importance of capturing global dynamics (across an entire utterance) and local dynamics (within segments of an utterance). In this paper, we propose a novel concept, EmoShapelets, to capture the local dynamics in speech. EmoShapelets capture changes in emotion that occur within utterances. We propose a framework to generate, update, and select EmoShapelets. We also demonstrate the discriminative power of EmoShapelets by using them with various classifiers to achieve comparable results with the state-of-the-art systems on the IEMOCAP dataset. EmoShapelets can serve as basic units of emotion expression and provide additional evidence supporting the existence of local patterns of emotion underlying human communication.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"32 1","pages":"229-235"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic recognition of emotion in speech is an active area of research. One of the important open challenges relates to how the emotional characteristics of speech change in time. Past research has demonstrated the importance of capturing global dynamics (across an entire utterance) and local dynamics (within segments of an utterance). In this paper, we propose a novel concept, EmoShapelets, to capture the local dynamics in speech. EmoShapelets capture changes in emotion that occur within utterances. We propose a framework to generate, update, and select EmoShapelets. We also demonstrate the discriminative power of EmoShapelets by using them with various classifiers to achieve comparable results with the state-of-the-art systems on the IEMOCAP dataset. EmoShapelets can serve as basic units of emotion expression and provide additional evidence supporting the existence of local patterns of emotion underlying human communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EmoShapelets:捕捉视听情感语音的局部动态
语音中情绪的自动识别是一个活跃的研究领域。其中一个重要的公开挑战涉及语言的情感特征如何随时间变化。过去的研究已经证明了捕捉全局动态(跨越整个话语)和局部动态(在话语的片段内)的重要性。在本文中,我们提出了一个新颖的概念,EmoShapelets,以捕捉语音中的局部动态。EmoShapelets捕捉话语中出现的情绪变化。我们提出了一个框架来生成、更新和选择EmoShapelets。我们还通过将EmoShapelets与各种分类器一起使用来实现与IEMOCAP数据集上最先进系统的比较结果,从而展示了EmoShapelets的判别能力。EmoShapelets可以作为情感表达的基本单位,并为支持人类交流中存在局部情感模式提供了额外的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1