Low cost fabrication and testing of high isolation RF MEMS switches

A. Joshi, S. Gangal, R. Gandhi, K. Natarajan, D. Bodas
{"title":"Low cost fabrication and testing of high isolation RF MEMS switches","authors":"A. Joshi, S. Gangal, R. Gandhi, K. Natarajan, D. Bodas","doi":"10.1109/ISPTS.2012.6260917","DOIUrl":null,"url":null,"abstract":"RF MEMS switches are key components in lowpower communication system. The present paper reports fabrication of MEMS based series and shunt switches for actuation voltage in the range of 30–50V. Focusing on low cost fabrication approach, Aluminum was chosen as a cost effective alternative for fabrication of transmission line and structural beam. The switches were designed for higher isolation of >25dB and low insertion loss of <0.5dB. The shunt and series switches were investigated for the frequency range of 1–20 GHz. The shunt switch shows an insertion loss of 0.5db and isolation of −28dB @ 20GHz and the series switch shows an insertion loss of 0.7db and isolation of −27dB @ 20GHz. The measured actuation voltage was 30V for shunt switch and 42V for series switch.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"32 1","pages":"189-192"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RF MEMS switches are key components in lowpower communication system. The present paper reports fabrication of MEMS based series and shunt switches for actuation voltage in the range of 30–50V. Focusing on low cost fabrication approach, Aluminum was chosen as a cost effective alternative for fabrication of transmission line and structural beam. The switches were designed for higher isolation of >25dB and low insertion loss of <0.5dB. The shunt and series switches were investigated for the frequency range of 1–20 GHz. The shunt switch shows an insertion loss of 0.5db and isolation of −28dB @ 20GHz and the series switch shows an insertion loss of 0.7db and isolation of −27dB @ 20GHz. The measured actuation voltage was 30V for shunt switch and 42V for series switch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高隔离射频MEMS开关的低成本制造和测试
射频MEMS开关是低功耗通信系统的关键部件。本论文报道了基于MEMS的驱动电压在30-50V范围内的串联和并联开关的制造。着眼于低成本的制造方法,选择铝作为制造输电线路和结构梁的成本效益替代方案。该开关设计具有更高的隔离度>25dB和低插入损耗<0.5dB。对1 ~ 20ghz频率范围内的并联开关和串联开关进行了研究。并联开关的插入损耗为0.5db,隔离度为−28dB @ 20GHz;串联开关的插入损耗为0.7db,隔离度为−27dB @ 20GHz。测量的驱动电压为并联开关30V,串联开关42V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing properties of the fluorine-doped tin oxide thin films Prepared by advanced spray pyrolysis Tailoring of optical band gap, morphology and surface wettability of bath deposited nanocrystalline ZnxCd(1−x)S thin films with incorporation of Zn for solar cell application Comparison of micro fabricated C and S bend shape SU-8 polymer waveguide of different bending diameters for maximum sensitivity A theoretical approach to study the temperature dependent performance of a SiC MESFET in sensor application. Effect of RE3+ (RE = Eu, Sm) ion doping on dielectric properties of nano-wollastonite synthesized by combustion method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1