{"title":"Specimen's Geometry Related Influences on Load-Bearing Capacity of Joining Aluminium and UHSS by Innovative Shear-Clinching","authors":"R. Hörhold, M. Müller, M. Merklein, G. Meschut","doi":"10.5539/JMSR.V6N4P19","DOIUrl":null,"url":null,"abstract":"Economic conditions as well as comfort and safety-related requirements lead to lightweight design especially in automotive body-in-white production processes. The consequential multi-material mix limits the reliability of conventional thermal joining technologies. Innovative mechanical joining technologies need to be established. Following the lightweight-design requirements, next step for weight-reduction would be the renunciation of additional elements. Clinching technologies support this idea by creating a form- and force-fitting joint, but are limited to the formability of the joining partners. Joining by forming without additional elements even of hot formed ultra-high-strength manganese steels and ductile aluminium can be realised by shear-clinching. A precisely coordinated tool setup initialises a crack in the die-sided material with limited formability without harming the punch-sided ductile aluminium. This paper presents current and detailed investigations of the influences of mechanical loads on strength capacity of multi-material joints using shear-clinching technologies. The results clearly show the promising potential and challenges of this innovative single-step joining technology for multi-material mixes.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"13 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V6N4P19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Economic conditions as well as comfort and safety-related requirements lead to lightweight design especially in automotive body-in-white production processes. The consequential multi-material mix limits the reliability of conventional thermal joining technologies. Innovative mechanical joining technologies need to be established. Following the lightweight-design requirements, next step for weight-reduction would be the renunciation of additional elements. Clinching technologies support this idea by creating a form- and force-fitting joint, but are limited to the formability of the joining partners. Joining by forming without additional elements even of hot formed ultra-high-strength manganese steels and ductile aluminium can be realised by shear-clinching. A precisely coordinated tool setup initialises a crack in the die-sided material with limited formability without harming the punch-sided ductile aluminium. This paper presents current and detailed investigations of the influences of mechanical loads on strength capacity of multi-material joints using shear-clinching technologies. The results clearly show the promising potential and challenges of this innovative single-step joining technology for multi-material mixes.