Adaptive Neural Inverse Optimal Control for a Class of Strict Feedback Stochastic Nonlinear Systems

Fengxue Cao, Tingting Yang, Yong-ming Li, Shaocheng Tong
{"title":"Adaptive Neural Inverse Optimal Control for a Class of Strict Feedback Stochastic Nonlinear Systems","authors":"Fengxue Cao, Tingting Yang, Yong-ming Li, Shaocheng Tong","doi":"10.1109/DDCLS.2019.8908901","DOIUrl":null,"url":null,"abstract":"This study develops an adaptive neural inverse optimal control method for a class of stochastic nonlinear systems. Neural networks (NN) are used to approximate the unknown nonlinear functions. The designed inverse optimal control strategy avoids the objective of solving the Hamilton-Jacobi-Bellman (HJB) equation and devises an optimal controller, which is related to the meaningful cost functional. Based on adaptive backstepping algorithm and Lyapunov stability theory, it is proved that the proposed control strategy guarantees the asymptotic stability in probability of the control systems and solves the inverse optimal problem.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"32 1","pages":"432-436"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study develops an adaptive neural inverse optimal control method for a class of stochastic nonlinear systems. Neural networks (NN) are used to approximate the unknown nonlinear functions. The designed inverse optimal control strategy avoids the objective of solving the Hamilton-Jacobi-Bellman (HJB) equation and devises an optimal controller, which is related to the meaningful cost functional. Based on adaptive backstepping algorithm and Lyapunov stability theory, it is proved that the proposed control strategy guarantees the asymptotic stability in probability of the control systems and solves the inverse optimal problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类严格反馈随机非线性系统的自适应神经逆最优控制
研究了一类随机非线性系统的自适应神经逆最优控制方法。神经网络(NN)用于逼近未知的非线性函数。所设计的逆最优控制策略避免了求解Hamilton-Jacobi-Bellman (HJB)方程的目标,设计了一个与有意义代价泛函相关的最优控制器。基于自适应反步算法和Lyapunov稳定性理论,证明了所提出的控制策略保证了控制系统的概率渐近稳定,并解决了逆最优问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1