{"title":"Performance analysis of an orthogonal rendezvous routing protocol for wireless mesh networks","authors":"A. Gandhimathinathan, P. D'Souza, D. Prasad","doi":"10.1109/ICEVENT.2013.6496537","DOIUrl":null,"url":null,"abstract":"The increased usage of directional methods of communications (e.g. directional smart antennas [15], Free-Space Optical transceivers [19], and sector antennas) has prompted research into leveraging directionality in every layer of the network stack. In this paper, we learnt how the concept of directionality can be used in layer 3 to facilitate routing under contexts of 1) wireless mesh networks, 2) highly mobile environments, and 3) overlay networks through virtual directions. In the context of wireless mesh networks, we introduce Orthogonal Rendezvous Routing Protocol (ORRP), a lightweight-but-scalable routing protocol utilizing the inherent nature of directional communications to relax information requirements such as coordinate space embedding and node localization. The ORRP source and ORRP destination send route discovery and route dissemination packets respectively in locally-chosen orthogonal directions. We show that ORRP achieves connectivity with high probability even in sparse networks with voids. ORRP scales well without imposing DHT-like graph structures (eg: trees, rings, torus etc). We show that MORRP achieves connectivity with high probability even in highly mobile environments while maintaining only probabilistic information about destinations. MORRP scales well without imposing DHT-like graph structures (eg: trees, rings, torus etc). We will also show that high connectivity can be achieved without the need to frequently disseminate node position resulting increased scalability even in highly mobile environments. We will also evaluate the metrics of reachability, state maintenance, path stretch, end-to-end latency and aggregate network good put under conditions of varying network densities, number of interfaces, and TTL values.","PeriodicalId":6426,"journal":{"name":"2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVENT.2013.6496537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The increased usage of directional methods of communications (e.g. directional smart antennas [15], Free-Space Optical transceivers [19], and sector antennas) has prompted research into leveraging directionality in every layer of the network stack. In this paper, we learnt how the concept of directionality can be used in layer 3 to facilitate routing under contexts of 1) wireless mesh networks, 2) highly mobile environments, and 3) overlay networks through virtual directions. In the context of wireless mesh networks, we introduce Orthogonal Rendezvous Routing Protocol (ORRP), a lightweight-but-scalable routing protocol utilizing the inherent nature of directional communications to relax information requirements such as coordinate space embedding and node localization. The ORRP source and ORRP destination send route discovery and route dissemination packets respectively in locally-chosen orthogonal directions. We show that ORRP achieves connectivity with high probability even in sparse networks with voids. ORRP scales well without imposing DHT-like graph structures (eg: trees, rings, torus etc). We show that MORRP achieves connectivity with high probability even in highly mobile environments while maintaining only probabilistic information about destinations. MORRP scales well without imposing DHT-like graph structures (eg: trees, rings, torus etc). We will also show that high connectivity can be achieved without the need to frequently disseminate node position resulting increased scalability even in highly mobile environments. We will also evaluate the metrics of reachability, state maintenance, path stretch, end-to-end latency and aggregate network good put under conditions of varying network densities, number of interfaces, and TTL values.