Believable self-learning AI for world of tennis

M. Mozgovoy, Marina Purgina, I. Umarov
{"title":"Believable self-learning AI for world of tennis","authors":"M. Mozgovoy, Marina Purgina, I. Umarov","doi":"10.1109/CIG.2016.7860420","DOIUrl":null,"url":null,"abstract":"We describe a method used to build a practical AI system for a mobile game of tennis. The chosen approach had to support two goals: (1) provide a large number of believable and diverse AI characters, and (2) let the users train AI “ghost” characters able to substitute them. We achieve these goals by learning AI agents from collected behavior data of human-controlled characters. The acquired knowledge is used by a case-based reasoning algorithm to perform human-like decision making. Our experiments show that the resulting agents indeed exhibit a variety of recognizable play styles, resembling the play styles of their human trainers. The resulting AI system demonstrated stable decision making, adequate for use in a real commercial game project.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"49 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We describe a method used to build a practical AI system for a mobile game of tennis. The chosen approach had to support two goals: (1) provide a large number of believable and diverse AI characters, and (2) let the users train AI “ghost” characters able to substitute them. We achieve these goals by learning AI agents from collected behavior data of human-controlled characters. The acquired knowledge is used by a case-based reasoning algorithm to perform human-like decision making. Our experiments show that the resulting agents indeed exhibit a variety of recognizable play styles, resembling the play styles of their human trainers. The resulting AI system demonstrated stable decision making, adequate for use in a real commercial game project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可信的自我学习AI网球世界
我们描述了一种用于为手机网球游戏构建实用AI系统的方法。所选择的方法必须支持两个目标:(1)提供大量可信且多样化的AI角色,以及(2)让用户训练能够替代它们的AI“幽灵”角色。我们通过从收集的人类控制角色的行为数据中学习AI代理来实现这些目标。所获得的知识被基于案例的推理算法用于执行类似人类的决策。我们的实验表明,最终生成的智能体确实表现出各种可识别的游戏风格,类似于它们的人类训练者的游戏风格。由此产生的AI系统显示出稳定的决策能力,足以用于真正的商业游戏项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1