{"title":"Electrolyte-based on-demand and disposable microbattery","authors":"K. Lee, Liwei Lin","doi":"10.1109/JMEMS.2003.820272","DOIUrl":null,"url":null,"abstract":"A micromachined battery based on liquid electrolyte and metal electrodes for on-demand and disposable usages has been successfully demonstrated. The microbattery uses gold as the positive electrode and zinc as the negative electrode and is fabricated by using the standard surface micromachining technology. Two kinds of electrolytes have been tested, including the combination of sulfuric acid/hydrogen peroxide and potassium hydroxide. The operation of the battery can be on-demand by putting a droplet of electrolyte to activate the operation. Theoretical voltage and capacity of the microbattery are formulated and compared with experimental results. The experimental study shows that a maximum voltage of 1.5 V and maximum capacity of 122.2 /spl mu/W-min have been achieved by using a single droplet of about 0.5 /spl mu/l of sulfuric acid/hydrogen peroxide.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"27 1","pages":"840-847"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
A micromachined battery based on liquid electrolyte and metal electrodes for on-demand and disposable usages has been successfully demonstrated. The microbattery uses gold as the positive electrode and zinc as the negative electrode and is fabricated by using the standard surface micromachining technology. Two kinds of electrolytes have been tested, including the combination of sulfuric acid/hydrogen peroxide and potassium hydroxide. The operation of the battery can be on-demand by putting a droplet of electrolyte to activate the operation. Theoretical voltage and capacity of the microbattery are formulated and compared with experimental results. The experimental study shows that a maximum voltage of 1.5 V and maximum capacity of 122.2 /spl mu/W-min have been achieved by using a single droplet of about 0.5 /spl mu/l of sulfuric acid/hydrogen peroxide.