Crop Water Availability Mapping in the Danube Basin Based on Deep Learning, Hydrological and Crop Growth Modelling

S. Migdall, Sandra Dotzler, Eva Gleisberg, F. Appel, M. Muerth, H. Bach, Giulio Weikmann, C. Paris, D. Marinelli, L. Bruzzone
{"title":"Crop Water Availability Mapping in the Danube Basin Based on Deep Learning, Hydrological and Crop Growth Modelling","authors":"S. Migdall, Sandra Dotzler, Eva Gleisberg, F. Appel, M. Muerth, H. Bach, Giulio Weikmann, C. Paris, D. Marinelli, L. Bruzzone","doi":"10.3390/engproc2021009042","DOIUrl":null,"url":null,"abstract":"The Danube Basin has been hit by several droughts in the last few years. As climate change makes weather extremes and temperature records in late winter and early spring more likely, water availability and irrigation possibilities become more important. In this paper, the crop water demand at field and national scale within the Danube Basin is presented using a dense time series of multispectral Sentinel-2 data, for crop type maps derived with deep learning techniques and physically-based models for crop parameter retrieval and crop growth modelling.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021009042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Danube Basin has been hit by several droughts in the last few years. As climate change makes weather extremes and temperature records in late winter and early spring more likely, water availability and irrigation possibilities become more important. In this paper, the crop water demand at field and national scale within the Danube Basin is presented using a dense time series of multispectral Sentinel-2 data, for crop type maps derived with deep learning techniques and physically-based models for crop parameter retrieval and crop growth modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习、水文和作物生长模型的多瑙河流域作物水分有效性制图
在过去的几年里,多瑙河流域遭受了几次干旱的袭击。由于气候变化使冬末早春的极端天气和温度记录更有可能发生,水的可用性和灌溉的可能性变得更加重要。本文利用多光谱Sentinel-2数据的密集时间序列,对多瑙河流域农田和全国范围内的作物需水量进行了分析,并利用深度学习技术和基于物理的作物参数检索模型和作物生长模型绘制了作物类型图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition Location-Assistive and Real-Time Query IoT-Based Transport System The Thermal Analysis of a Sensible Heat Thermal Energy Storage System Using Circular-Shaped Slag and Concrete for Medium- to High-Temperature Applications Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition Solar Powered DC Refrigerator for Small Scale Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1